Understanding the reactivity of the cathode surface is of key importance to the development of batteries. Here, density functional theory is applied to investigate the oxidative decomposition of the electrolyte component, ethylene carbonate (EC), on layered LixMO2 oxide surfaces. We compare adsorption energy trends of atoms and small molecules, on both surface oxygen and metal sites, as a function of the Li content of the surface. The oxygen sites are identified as the reactive site for the electrolyte oxidation reaction (EOR). We report reaction energies and NEB-calculated kinetic barriers for the initial oxidative decomposition of EC, and correlate both with the reaction energy of hydrogen adsorption on oxygen. The hydrogen adsorption energy scales with the distance between the Fermi level and the O-2p band center. We expect this model of the EOR to be valid for other organic electrolytes and other Li metal oxide surfaces, due to its simplicity, and the model leads to simple design principles for protective coatings.
Ostergaard, T., Giordano, L., Castelli, I., Maglia, F., Antonopoulos, B., Shao-Horn, Y., et al. (2018). Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces. JOURNAL OF PHYSICAL CHEMISTRY. C, 122(19), 10442-10449 [10.1021/acs.jpcc.8b01713].
Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces
Giordano L.;
2018
Abstract
Understanding the reactivity of the cathode surface is of key importance to the development of batteries. Here, density functional theory is applied to investigate the oxidative decomposition of the electrolyte component, ethylene carbonate (EC), on layered LixMO2 oxide surfaces. We compare adsorption energy trends of atoms and small molecules, on both surface oxygen and metal sites, as a function of the Li content of the surface. The oxygen sites are identified as the reactive site for the electrolyte oxidation reaction (EOR). We report reaction energies and NEB-calculated kinetic barriers for the initial oxidative decomposition of EC, and correlate both with the reaction energy of hydrogen adsorption on oxygen. The hydrogen adsorption energy scales with the distance between the Fermi level and the O-2p band center. We expect this model of the EOR to be valid for other organic electrolytes and other Li metal oxide surfaces, due to its simplicity, and the model leads to simple design principles for protective coatings.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.