We study the Cauchy problem for the linear double dispersion equation utt-Δutt+Δ2u-Δu-Δut=0,t≥0,x∈Rnand we derive long time decay estimates for the solution in Lp spaces and in real Hardy spaces. We employ the obtained results to study the equation with nonlinearity Δ f(u) and nonsmooth f.

D'Abbicco, M., De Luca, A. (2020). Decay estimates for the double dispersion equation with initial data in real Hardy spaces. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 11(1), 363-386 [10.1007/s11868-019-00287-1].

Decay estimates for the double dispersion equation with initial data in real Hardy spaces

De Luca A.
2020

Abstract

We study the Cauchy problem for the linear double dispersion equation utt-Δutt+Δ2u-Δu-Δut=0,t≥0,x∈Rnand we derive long time decay estimates for the solution in Lp spaces and in real Hardy spaces. We employ the obtained results to study the equation with nonlinearity Δ f(u) and nonsmooth f.
Articolo in rivista - Articolo scientifico
Cauchy problem; Decay estimates; Double dispersion equation; Fourier multiplier estimates; Global small data solutions; Real Hardy spaces;
English
2-mar-2019
2020
11
1
363
386
none
D'Abbicco, M., De Luca, A. (2020). Decay estimates for the double dispersion equation with initial data in real Hardy spaces. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 11(1), 363-386 [10.1007/s11868-019-00287-1].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/347211
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact