Twenty-eight human breast tumour specimens were studied with small-angle x-ray scattering (SAXS), and 10 of those were imaged by the diffraction enhanced x-ray imaging (DEI) technique. The sample diameter was 20 mm and the thickness 1 mm. Two examples of ductal carcinoma are illustrated by histology images, DEI, and maps of the collagen d-spacing and scattered intensity in the Porod regime, which characterize the SAXS patterns from collagen-rich regions of the samples. Histo-pathology reveals the cancer-invaded regions, and the maps of the SAXS parameters show that in these regions the scattering signal differs significantly from scattering by the surrounding tissue, indicating a degradation of the collagen structure in the invaded regions. The DEI images show the borders between collagen and adipose tissue and provide a co-ordinate system for tissue mapping by SAXS. In addition, degradation of the collagen structure in an invaded region is revealed by fading contrast of the DEI refraction image. The 28 samples include fresh, defrosted tissue and formalin-fixed tissue. The d-values with their standard deviations are given. In the fresh samples there is a systematic 0.76% increase of the d-value in the invaded regions, averaged over 11 samples. Only intra-sample comparisons are made for the formalin- fixed samples, and with a long fixation time, the difference in the d-value stabilizes at about 0.7%. The correspondence between the DEI images, the SAXS maps and the histo-pathology suggests that definitive information on tumour growth and malignancy is obtained by combining these x-ray methods.
Fernandez, M., Keyrilainen, J., Serimaa, R., Torkkeli, M., Karjalainen-Lindsberg, M., Leidenius, M., et al. (2005). Human breast cancer in vitro: matching histo-pathology with small-angle x-ray scattering and diffraction enhanced x-ray imaging. PHYSICS IN MEDICINE AND BIOLOGY, 50(13), 2991-3006 [10.1088/0031-9155/50/13/002].
Human breast cancer in vitro: matching histo-pathology with small-angle x-ray scattering and diffraction enhanced x-ray imaging
Bravin AMembro del Collaboration Group
;
2005
Abstract
Twenty-eight human breast tumour specimens were studied with small-angle x-ray scattering (SAXS), and 10 of those were imaged by the diffraction enhanced x-ray imaging (DEI) technique. The sample diameter was 20 mm and the thickness 1 mm. Two examples of ductal carcinoma are illustrated by histology images, DEI, and maps of the collagen d-spacing and scattered intensity in the Porod regime, which characterize the SAXS patterns from collagen-rich regions of the samples. Histo-pathology reveals the cancer-invaded regions, and the maps of the SAXS parameters show that in these regions the scattering signal differs significantly from scattering by the surrounding tissue, indicating a degradation of the collagen structure in the invaded regions. The DEI images show the borders between collagen and adipose tissue and provide a co-ordinate system for tissue mapping by SAXS. In addition, degradation of the collagen structure in an invaded region is revealed by fading contrast of the DEI refraction image. The 28 samples include fresh, defrosted tissue and formalin-fixed tissue. The d-values with their standard deviations are given. In the fresh samples there is a systematic 0.76% increase of the d-value in the invaded regions, averaged over 11 samples. Only intra-sample comparisons are made for the formalin- fixed samples, and with a long fixation time, the difference in the d-value stabilizes at about 0.7%. The correspondence between the DEI images, the SAXS maps and the histo-pathology suggests that definitive information on tumour growth and malignancy is obtained by combining these x-ray methods.File | Dimensione | Formato | |
---|---|---|---|
Fernandez-pmb2005.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
783.86 kB
Formato
Adobe PDF
|
783.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.