The definition of classical holomorphic function spaces such as the Hardy space or the Dirichlet space on the Hartogs triangle is not canonical. In this paper we introduce a natural family of holomorphic function spaces on the Hartogs triangle which includes some weighted Bergman spaces, a candidate Hardy space and a candidate Dirichlet space. For the weighted Bergman spaces and the Hardy space we study the (Formula presented.) mapping properties of Bergman and Szegő projection respectively, whereas for the Dirichlet space we prove it is isometric to the Dirichlet space on the bidisc.
Monguzzi, A. (2021). Holomorphic function spaces on the Hartogs triangle. MATHEMATISCHE NACHRICHTEN, 294(11), 2209-2231 [10.1002/mana.201900477].
Holomorphic function spaces on the Hartogs triangle
Monguzzi A.
2021
Abstract
The definition of classical holomorphic function spaces such as the Hardy space or the Dirichlet space on the Hartogs triangle is not canonical. In this paper we introduce a natural family of holomorphic function spaces on the Hartogs triangle which includes some weighted Bergman spaces, a candidate Hardy space and a candidate Dirichlet space. For the weighted Bergman spaces and the Hardy space we study the (Formula presented.) mapping properties of Bergman and Szegő projection respectively, whereas for the Dirichlet space we prove it is isometric to the Dirichlet space on the bidisc.File | Dimensione | Formato | |
---|---|---|---|
2021 - Monguzzi - Holomorphic function spaces on the Hartogs triangle.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
288.52 kB
Formato
Adobe PDF
|
288.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.