Description of purpose: Treatment of osteoarthritis in stages of reversible disease requires high resolution visualization of early cartilage damage and of subchondral bone. Here, DEI (Diffraction Enhanced Imaging) is compared to MRI, computed X-ray tomography (CT) and ultrasound (UI) in its ability to detect early degeneration of articular cartilage. In contrast to conventional absorptive X-ray examination where cartilage is poorly visible DEI captures cartilage by detection of selected refraction. Methods: Human femoral heads were investigated by macroscopic inspection, conventional X-ray examination, DEI, MRI, CT, UI and histology. DEI is an imaging technique applying a monochromatic parallel synchrotron X-ray beam. Image features were verified by histology. Results: DEI, MRI and ultrasound lead to interpretable images of cartilage. Of all techniques, DEI provided highest image resolution revealing the structural tissue architecture. MRI needs a very long exposure time (more than 5 hours) to achieve comparable quality. Application of ultrasound is limited because of joint geometry and, at high sound frequency, the necessity of close contact between cartilage and transducer. DEI is an experimental technique which needs synchrotron radiation. Conclusion: DEI is a very promising imaging technique for visualization of cartilage and bone. It may serve as an excellent analytical tool for experimental studies. Our pictures show a part of future of optimised techniques for imaging. Synchrotron based DEI may lead the way towards optimisation of improved techniques for imaging. Upon development of adequate small scale X-ray sources, DEI will also be an important supplementation for medical imaging.
Wagner, A., Aurich, M., Stoessel, M., Sieber, N., Wetzel, W., Mollenhauer, J., et al. (2005). Chance and limit of imaging of articular cartilage in vitro in healthy and arthritic joints - DEI (Diffraction Enhanced Imaging) in comparison with MRI, CT and ultrasound. In Proceedings of SPIE volume 5746 (pp.542-549) [10.1117/12.589614].
Chance and limit of imaging of articular cartilage in vitro in healthy and arthritic joints - DEI (Diffraction Enhanced Imaging) in comparison with MRI, CT and ultrasound
Bravin AMembro del Collaboration Group
;
2005
Abstract
Description of purpose: Treatment of osteoarthritis in stages of reversible disease requires high resolution visualization of early cartilage damage and of subchondral bone. Here, DEI (Diffraction Enhanced Imaging) is compared to MRI, computed X-ray tomography (CT) and ultrasound (UI) in its ability to detect early degeneration of articular cartilage. In contrast to conventional absorptive X-ray examination where cartilage is poorly visible DEI captures cartilage by detection of selected refraction. Methods: Human femoral heads were investigated by macroscopic inspection, conventional X-ray examination, DEI, MRI, CT, UI and histology. DEI is an imaging technique applying a monochromatic parallel synchrotron X-ray beam. Image features were verified by histology. Results: DEI, MRI and ultrasound lead to interpretable images of cartilage. Of all techniques, DEI provided highest image resolution revealing the structural tissue architecture. MRI needs a very long exposure time (more than 5 hours) to achieve comparable quality. Application of ultrasound is limited because of joint geometry and, at high sound frequency, the necessity of close contact between cartilage and transducer. DEI is an experimental technique which needs synchrotron radiation. Conclusion: DEI is a very promising imaging technique for visualization of cartilage and bone. It may serve as an excellent analytical tool for experimental studies. Our pictures show a part of future of optimised techniques for imaging. Synchrotron based DEI may lead the way towards optimisation of improved techniques for imaging. Upon development of adequate small scale X-ray sources, DEI will also be an important supplementation for medical imaging.File | Dimensione | Formato | |
---|---|---|---|
wagner_5746_59.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.