Porous silicon (PSi) is a promising material for future integrated nanophotonics when coupled with guest emitters, still facing challenges in terms of homogenous distribution and nanometric thickness of the emitter coating within the silicon nanostructure. Herein, it is shown that the nanopore surface of a porous silicon oxide (PSiO2) microcavity (MC) can be conformally coated with a uniform nm-thick layer of a cationic light-emitting polyelectrolyte, e.g., poly(allylamine hydrochloride) labeled with Rhodamine B (PAH-RhoB), leveraging the self-tuned electrostatic interaction of the positively-charged PAH-RhoB polymer and negatively-charged PSiO2 surface. It is found that the emission of PAH-RhoB in the PSiO2 MC is enhanced (≈2.5×) and narrowed (≈30×) at the resonant wavelength, compared with that of PAH-RhoB in a non-resonant PSiO2 reference structure. The time-resolved photoluminescence analysis highlights a shortening (≈20%) of the PAH-RhoB emission lifetime in the PSiO2 MC at the resonance versus off-resonance wavelengths, and with respect to the reference structure, thereby proving a significant variation of the radiative decay rate. Remarkably, an experimental Purcell factor Fp = 2.82 is achieved. This is further confirmed by the enhancement of the photoluminescence quantum yield of the PAH-RhoB in the PSiO2 MC with respect to the reference structure. Application of the electrostatic nanoassembling approach to other emitting dyes, nanomaterials, and nanophotonic systems is envisaged.

Chen, Z., Robbiano, V., Paterno, G., Carnicella, G., Debrassi, A., La Mattina, A., et al. (2021). Nanoscale Photoluminescence Manipulation in Monolithic Porous Silicon Oxide Microcavity Coated with Rhodamine-Labeled Polyelectrolyte via Electrostatic Nanoassembling. ADVANCED OPTICAL MATERIALS, 9(20) [10.1002/adom.202100036].

Nanoscale Photoluminescence Manipulation in Monolithic Porous Silicon Oxide Microcavity Coated with Rhodamine-Labeled Polyelectrolyte via Electrostatic Nanoassembling

Minotto, A;
2021

Abstract

Porous silicon (PSi) is a promising material for future integrated nanophotonics when coupled with guest emitters, still facing challenges in terms of homogenous distribution and nanometric thickness of the emitter coating within the silicon nanostructure. Herein, it is shown that the nanopore surface of a porous silicon oxide (PSiO2) microcavity (MC) can be conformally coated with a uniform nm-thick layer of a cationic light-emitting polyelectrolyte, e.g., poly(allylamine hydrochloride) labeled with Rhodamine B (PAH-RhoB), leveraging the self-tuned electrostatic interaction of the positively-charged PAH-RhoB polymer and negatively-charged PSiO2 surface. It is found that the emission of PAH-RhoB in the PSiO2 MC is enhanced (≈2.5×) and narrowed (≈30×) at the resonant wavelength, compared with that of PAH-RhoB in a non-resonant PSiO2 reference structure. The time-resolved photoluminescence analysis highlights a shortening (≈20%) of the PAH-RhoB emission lifetime in the PSiO2 MC at the resonance versus off-resonance wavelengths, and with respect to the reference structure, thereby proving a significant variation of the radiative decay rate. Remarkably, an experimental Purcell factor Fp = 2.82 is achieved. This is further confirmed by the enhancement of the photoluminescence quantum yield of the PAH-RhoB in the PSiO2 MC with respect to the reference structure. Application of the electrostatic nanoassembling approach to other emitting dyes, nanomaterials, and nanophotonic systems is envisaged.
Articolo in rivista - Articolo scientifico
electrostatic nanoassembly coating; functionalized fluorophores; nanoscale photoluminescence; photonic manipulation; porous silicon oxide microcavities;
English
2021
9
20
2100036
open
Chen, Z., Robbiano, V., Paterno, G., Carnicella, G., Debrassi, A., La Mattina, A., et al. (2021). Nanoscale Photoluminescence Manipulation in Monolithic Porous Silicon Oxide Microcavity Coated with Rhodamine-Labeled Polyelectrolyte via Electrostatic Nanoassembling. ADVANCED OPTICAL MATERIALS, 9(20) [10.1002/adom.202100036].
File in questo prodotto:
File Dimensione Formato  
10281-340949_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/340949
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 10
Social impact