In this paper, we study a non-local fractional Laplace equation, depending on a parameter, with asymptotically linear right-hand side. Our main result concerns the existence of weak solutions for this equation, and it is obtained using variational and topological methods. We treat both the non-resonant case and the resonant one.

Fiscella, A., Servadei, R., Valdinoci, E. (2015). Asymptotically linear problems driven by fractional Laplacian operators. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 38(16), 3551-3563 [10.1002/mma.3438].

Asymptotically linear problems driven by fractional Laplacian operators

Fiscella, A;
2015

Abstract

In this paper, we study a non-local fractional Laplace equation, depending on a parameter, with asymptotically linear right-hand side. Our main result concerns the existence of weak solutions for this equation, and it is obtained using variational and topological methods. We treat both the non-resonant case and the resonant one.
Articolo in rivista - Articolo scientifico
integrodifferential operators, fractional Laplacian, variational techniques, Saddle Point Theorem, Palais–Smale condition
English
2015
38
16
3551
3563
reserved
Fiscella, A., Servadei, R., Valdinoci, E. (2015). Asymptotically linear problems driven by fractional Laplacian operators. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 38(16), 3551-3563 [10.1002/mma.3438].
File in questo prodotto:
File Dimensione Formato  
Fiscella_et_al-2015-Mathematical_Methods_in_the_Applied_Sciences.pdf

Solo gestori archivio

Dimensione 279.33 kB
Formato Adobe PDF
279.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/338110
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
Social impact