In this paper we study a class of critical Kirchhoff type equations involving the fractional p–Laplacian operator, that is M(∫∫R2N|u(x)-u(y)|p|x-y|N+psdxdy)(-Δ)psu=λw(x)|u|q-2u+|u|ps∗-2u,x∈RN,where (-Δ)ps is the fractional p–Laplacian operator with 0 < s< 1 < p[removed] ps, 1

Zhang, B., Fiscella, A., Liang, S. (2019). Infinitely many solutions for critical degenerate Kirchhoff type equations involving the fractional p-Laplacian. APPLIED MATHEMATICS AND OPTIMIZATION, 80(1), 63-80 [10.1007/s00245-017-9458-5].

Infinitely many solutions for critical degenerate Kirchhoff type equations involving the fractional p-Laplacian

Fiscella A
;
2019

Abstract

In this paper we study a class of critical Kirchhoff type equations involving the fractional p–Laplacian operator, that is M(∫∫R2N|u(x)-u(y)|p|x-y|N+psdxdy)(-Δ)psu=λw(x)|u|q-2u+|u|ps∗-2u,x∈RN,where (-Δ)ps is the fractional p–Laplacian operator with 0 < s< 1 < p[removed] ps, 1
Articolo in rivista - Articolo scientifico
Fractional p–Laplacian, degenerate Kirchhoff equations, critical Sobolev exponent, variational methods
English
8-nov-2017
2019
80
1
63
80
none
Zhang, B., Fiscella, A., Liang, S. (2019). Infinitely many solutions for critical degenerate Kirchhoff type equations involving the fractional p-Laplacian. APPLIED MATHEMATICS AND OPTIMIZATION, 80(1), 63-80 [10.1007/s00245-017-9458-5].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/338104
Citazioni
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
Social impact