In this paper we study a class of critical Kirchhoff type equations involving the fractional p–Laplacian operator, that is M(∫∫R2N|u(x)-u(y)|p|x-y|N+psdxdy)(-Δ)psu=λw(x)|u|q-2u+|u|ps∗-2u,x∈RN,where (-Δ)ps is the fractional p–Laplacian operator with 0 < s< 1 < p[removed] ps, 1

Zhang, B., Fiscella, A., Liang, S. (2019). Infinitely many solutions for critical degenerate Kirchhoff type equations involving the fractional p-Laplacian. APPLIED MATHEMATICS AND OPTIMIZATION, 80(1), 63-80 [10.1007/s00245-017-9458-5].

Infinitely many solutions for critical degenerate Kirchhoff type equations involving the fractional p-Laplacian

Fiscella A
;
2019

Abstract

In this paper we study a class of critical Kirchhoff type equations involving the fractional p–Laplacian operator, that is M(∫∫R2N|u(x)-u(y)|p|x-y|N+psdxdy)(-Δ)psu=λw(x)|u|q-2u+|u|ps∗-2u,x∈RN,where (-Δ)ps is the fractional p–Laplacian operator with 0 < s< 1 < p[removed] ps, 1
Articolo in rivista - Articolo scientifico
Fractional p–Laplacian, degenerate Kirchhoff equations, critical Sobolev exponent, variational methods
English
63
80
18
Zhang, B., Fiscella, A., Liang, S. (2019). Infinitely many solutions for critical degenerate Kirchhoff type equations involving the fractional p-Laplacian. APPLIED MATHEMATICS AND OPTIMIZATION, 80(1), 63-80 [10.1007/s00245-017-9458-5].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/338104
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
Social impact