Mass spectrometry (MS)-based metabolomics approaches have been used for characterizing the metabolite content and composition of biological samples in drug discovery and development, as well as in metabolic engineering, and food and plant sciences applications. Here, we describe a protocol routinely used in our laboratory to conduct a metabolic profiling of small polar metabolites from biological samples. Metabolites can be extracted from each sample using a methanol-based single-phase extraction procedure. The combination of LC-based hydrophilic interaction liquid chromatography (HILIC) and a hybrid quadrupole–time of flight (Q-ToF) mass spectrometer allows the comprehensive analysis of small polar metabolites including sugars, phosphorylated compounds, purines and pyrimidines, nucleotides, nucleosides, acylcarnitines, carboxylic acids, hydrophilic vitamins and amino acids. Retention times and accurate masses of metabolites involved in key metabolic pathways are annotated for routine high-throughput screening in both untargeted and targeted metabolomics analyses.
Paglia, G., Astarita, G. (2022). A High-Throughput HILIC-MS-Based Metabolomic Assay for the Analysis of Polar Metabolites. In V. Shulaev (a cura di), Plant Metabolic Engineering : Methods and Protocols (pp. 137-159). Humana Press Inc. [10.1007/978-1-0716-1822-6_11].
A High-Throughput HILIC-MS-Based Metabolomic Assay for the Analysis of Polar Metabolites
Paglia, GPrimo
;
2022
Abstract
Mass spectrometry (MS)-based metabolomics approaches have been used for characterizing the metabolite content and composition of biological samples in drug discovery and development, as well as in metabolic engineering, and food and plant sciences applications. Here, we describe a protocol routinely used in our laboratory to conduct a metabolic profiling of small polar metabolites from biological samples. Metabolites can be extracted from each sample using a methanol-based single-phase extraction procedure. The combination of LC-based hydrophilic interaction liquid chromatography (HILIC) and a hybrid quadrupole–time of flight (Q-ToF) mass spectrometer allows the comprehensive analysis of small polar metabolites including sugars, phosphorylated compounds, purines and pyrimidines, nucleotides, nucleosides, acylcarnitines, carboxylic acids, hydrophilic vitamins and amino acids. Retention times and accurate masses of metabolites involved in key metabolic pathways are annotated for routine high-throughput screening in both untargeted and targeted metabolomics analyses.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.