Objective To determine which clinical, laboratory, and imaging features most accurately distinguished gout from non-gout. Methods We performed a cross-sectional study of consecutive rheumatology clinic patients with ≥1 swollen joint or subcutaneous tophus. Gout was defined by synovial fluid or tophus aspirate microscopy by certified examiners in all patients. The sample was randomly divided into a model development (two-thirds) and test sample (one-third). Univariate and multivariate association between clinical features and monosodium urate-defined gout was determined using logistic regression modeling. Shrinkage of regression weights was performed to prevent overfitting of the final model. Latent class analysis was conducted to identify patterns of joint involvement. Results In total, 983 patients were included. Gout was present in 509 (52%). In the development sample (n = 653), the following features were selected for the final model: joint erythema (multivariate odds ratio [OR] 2.13), difficulty walking (multivariate OR 7.34), time to maximal pain <24 hours (multivariate OR 1.32), resolution by 2 weeks (multivariate OR 3.58), tophus (multivariate OR 7.29), first metatarsophalangeal (MTP1) joint ever involved (multivariate OR 2.30), location of currently tender joints in other foot/ankle (multivariate OR 2.28) or MTP1 joint (multivariate OR 2.82), serum urate level >6 mg/dl (0.36 mmoles/liter; multivariate OR 3.35), ultrasound double contour sign (multivariate OR 7.23), and radiograph erosion or cyst (multivariate OR 2.49). The final model performed adequately in the test set, with no evidence of misfit, high discrimination, and predictive ability. MTP1 joint involvement was the most common joint pattern (39.4%) in gout cases. Conclusion Ten key discriminating features have been identified for further evaluation for new gout classification criteria. Ultrasound findings and degree of uricemia add discriminating value, and will significantly contribute to more accurate classification criteria.

Taylor, W., Fransen, J., Jansen, T., Dalbeth, N., Schumacher, H., Brown, M., et al. (2015). Study for updated gout classification criteria: Identification of features to classify gout. ARTHRITIS CARE & RESEARCH, 67(9), 1304-1315 [10.1002/acr.22585].

Study for updated gout classification criteria: Identification of features to classify gout

Scire CA.;
2015

Abstract

Objective To determine which clinical, laboratory, and imaging features most accurately distinguished gout from non-gout. Methods We performed a cross-sectional study of consecutive rheumatology clinic patients with ≥1 swollen joint or subcutaneous tophus. Gout was defined by synovial fluid or tophus aspirate microscopy by certified examiners in all patients. The sample was randomly divided into a model development (two-thirds) and test sample (one-third). Univariate and multivariate association between clinical features and monosodium urate-defined gout was determined using logistic regression modeling. Shrinkage of regression weights was performed to prevent overfitting of the final model. Latent class analysis was conducted to identify patterns of joint involvement. Results In total, 983 patients were included. Gout was present in 509 (52%). In the development sample (n = 653), the following features were selected for the final model: joint erythema (multivariate odds ratio [OR] 2.13), difficulty walking (multivariate OR 7.34), time to maximal pain <24 hours (multivariate OR 1.32), resolution by 2 weeks (multivariate OR 3.58), tophus (multivariate OR 7.29), first metatarsophalangeal (MTP1) joint ever involved (multivariate OR 2.30), location of currently tender joints in other foot/ankle (multivariate OR 2.28) or MTP1 joint (multivariate OR 2.82), serum urate level >6 mg/dl (0.36 mmoles/liter; multivariate OR 3.35), ultrasound double contour sign (multivariate OR 7.23), and radiograph erosion or cyst (multivariate OR 2.49). The final model performed adequately in the test set, with no evidence of misfit, high discrimination, and predictive ability. MTP1 joint involvement was the most common joint pattern (39.4%) in gout cases. Conclusion Ten key discriminating features have been identified for further evaluation for new gout classification criteria. Ultrasound findings and degree of uricemia add discriminating value, and will significantly contribute to more accurate classification criteria.
Articolo in rivista - Articolo scientifico
gout
English
2015
67
9
1304
1315
reserved
Taylor, W., Fransen, J., Jansen, T., Dalbeth, N., Schumacher, H., Brown, M., et al. (2015). Study for updated gout classification criteria: Identification of features to classify gout. ARTHRITIS CARE & RESEARCH, 67(9), 1304-1315 [10.1002/acr.22585].
File in questo prodotto:
File Dimensione Formato  
Taylor-2015-Arthritis Care Res-VoR.pdf

Solo gestori archivio

Descrizione: Original Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 175.47 kB
Formato Adobe PDF
175.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/337280
Citazioni
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 95
Social impact