Sun-induced fluorescence (SIF) retrieved from satellite measurements has been widely used as proxy for chlorophyll-a concentration and as indicator of phytoplankton physiological status in oceans. The practical use of this naturally occurring light signal in environmental research is, however, under-exploited, particularly in research focusing on optically complex waters such as inland and coastal waters. In this study, we investigated methodological and knowledge gaps in remote sensing of chlorophyll-a SIF in optically complex waters by reviewing the theory behind SIF occurrence, the availability of existing and upcoming instrumentation, the availability of SIF retrieval schemes, and the applications for aquatic research. Starting with an overview of factors that influence SIF leaving the water body, we further investigated available and upcoming observational capacity by in situ, airborne and satellite sensors. We discuss requirements for spatial, spectral, temporal, and radiometric resolution of observing systems in the context of SIF dynamics. We assessed viable retrieval techniques able to disentangle SIF from non-SIF contribution to the upwelling radiance, ranging from the established multispectral Fluorescence Line Height algorithm (FLH) approach to hyperspectral approaches including model inversion, spectral fitting methods and machine learning regression procedures. Finally, we provide an overview of applications, which could potentially benefit from improved SIF emission estimates such as biomass estimation, algal bloom investigation and primary productivity modelling.

Gupana, R., Odermatt, D., Cesana, I., Giardino, C., Nedbal, L., Damm, A. (2021). Remote sensing of sun-induced chlorophyll-a fluorescence in inland and coastal waters: Current state and future prospects. REMOTE SENSING OF ENVIRONMENT, 262(1 September 2021) [10.1016/j.rse.2021.112482].

Remote sensing of sun-induced chlorophyll-a fluorescence in inland and coastal waters: Current state and future prospects

Cesana I.;
2021

Abstract

Sun-induced fluorescence (SIF) retrieved from satellite measurements has been widely used as proxy for chlorophyll-a concentration and as indicator of phytoplankton physiological status in oceans. The practical use of this naturally occurring light signal in environmental research is, however, under-exploited, particularly in research focusing on optically complex waters such as inland and coastal waters. In this study, we investigated methodological and knowledge gaps in remote sensing of chlorophyll-a SIF in optically complex waters by reviewing the theory behind SIF occurrence, the availability of existing and upcoming instrumentation, the availability of SIF retrieval schemes, and the applications for aquatic research. Starting with an overview of factors that influence SIF leaving the water body, we further investigated available and upcoming observational capacity by in situ, airborne and satellite sensors. We discuss requirements for spatial, spectral, temporal, and radiometric resolution of observing systems in the context of SIF dynamics. We assessed viable retrieval techniques able to disentangle SIF from non-SIF contribution to the upwelling radiance, ranging from the established multispectral Fluorescence Line Height algorithm (FLH) approach to hyperspectral approaches including model inversion, spectral fitting methods and machine learning regression procedures. Finally, we provide an overview of applications, which could potentially benefit from improved SIF emission estimates such as biomass estimation, algal bloom investigation and primary productivity modelling.
Articolo in rivista - Review Essay
Case-2 waters; Hyperspectral data; Optically complex waters; Phytoplankton fluorescence; Phytoplankton remote sensing; Review; Water quality
English
21-mag-2021
2021
262
1 September 2021
112482
open
Gupana, R., Odermatt, D., Cesana, I., Giardino, C., Nedbal, L., Damm, A. (2021). Remote sensing of sun-induced chlorophyll-a fluorescence in inland and coastal waters: Current state and future prospects. REMOTE SENSING OF ENVIRONMENT, 262(1 September 2021) [10.1016/j.rse.2021.112482].
File in questo prodotto:
File Dimensione Formato  
Gupana_2021.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/330881
Citazioni
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 30
Social impact