We prove an Euler-Maclaurin formula for double polygonal sums and, as a corollary, we obtain approximate quadrature formulas for integrals of smooth functions over polygons with integer vertices. Our Euler-Maclaurin formula is in the spirit of Pick’s theorem on the number of integer points in an integer polygon and involves weighted Riemann sums, using tools from Harmonic analysis. Finally, we also exhibit a classical trick, dating back to Huygens and Newton, to accelerate convergence of these Riemann sums.

Brandolini, L., Colzani, L., Robins, S., Travaglini, G. (2022). An Euler-MacLaurin formula for polygonal sums. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 375(1), 151-172 [10.1090/tran/8462].

An Euler-MacLaurin formula for polygonal sums

Colzani, L;Travaglini, G
2022

Abstract

We prove an Euler-Maclaurin formula for double polygonal sums and, as a corollary, we obtain approximate quadrature formulas for integrals of smooth functions over polygons with integer vertices. Our Euler-Maclaurin formula is in the spirit of Pick’s theorem on the number of integer points in an integer polygon and involves weighted Riemann sums, using tools from Harmonic analysis. Finally, we also exhibit a classical trick, dating back to Huygens and Newton, to accelerate convergence of these Riemann sums.
Articolo in rivista - Articolo scientifico
Approximate quadratures; Discrepancy; Euler-Maclaurin formula; Fourier analysis; Integer points;
English
8-ott-2021
2022
375
1
151
172
none
Brandolini, L., Colzani, L., Robins, S., Travaglini, G. (2022). An Euler-MacLaurin formula for polygonal sums. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 375(1), 151-172 [10.1090/tran/8462].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/330681
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact