We present a low order virtual element discretization for time dependent Maxwell's equations, which allow for the use of general polyhedral meshes. Both the semi- and fully-discrete schemes are considered. We derive optimal a priori estimates and validate them on a set of numerical experiments. As pivot results, we discuss some novel inequalities associated with de Rahm sequences of nodal, edge, and face virtual element spaces.

Beirao da Veiga, L., Dassi, F., Manzini, G., Mascotto, L. (2022). Virtual elements for Maxwell's equations. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 116(15 June 2022), 82-99 [10.1016/j.camwa.2021.08.019].

Virtual elements for Maxwell's equations

Beirao da Veiga, L
;
Dassi, F
;
Manzini, G
;
Mascotto, L
2022

Abstract

We present a low order virtual element discretization for time dependent Maxwell's equations, which allow for the use of general polyhedral meshes. Both the semi- and fully-discrete schemes are considered. We derive optimal a priori estimates and validate them on a set of numerical experiments. As pivot results, we discuss some novel inequalities associated with de Rahm sequences of nodal, edge, and face virtual element spaces.
Articolo in rivista - Articolo scientifico
Maxwell's equations; Polyhedral meshes; Virtual element method;
English
2022
82
99
18
Beirao da Veiga, L., Dassi, F., Manzini, G., Mascotto, L. (2022). Virtual elements for Maxwell's equations. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 116(15 June 2022), 82-99 [10.1016/j.camwa.2021.08.019].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/329754
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 3
Social impact