We study random walks with finite jump distance l in continuum percolation systems (random void model). Using scaling arguments and numerical simulations we show that the mean-square displacement at criticality is characterized by r2(t) t2k with an exponent k depending sensitively on the time regime considered. For times below tx(1)l-a1 (a14 in d=2 and a15 in d=3), we recover the results of Halperin et al., k13 in d=2 and k0.18 in d=3, which apply in the limit l0. In a wide intermediate time regime tx(1)tx(2) we predict the exponents k from the overlapping Lorentz gas. © 1989 The American Physical Society.

Petersen, J., Roman, H., Bunde, A., Dieterich, W. (1989). Nonuniversality of transport exponents in continuum percolation systems: Effects of finite jump distance. PHYSICAL REVIEW. B, CONDENSED MATTER, 39(1), 893-896 [10.1103/PhysRevB.39.893].

Nonuniversality of transport exponents in continuum percolation systems: Effects of finite jump distance

Roman H. E.;
1989

Abstract

We study random walks with finite jump distance l in continuum percolation systems (random void model). Using scaling arguments and numerical simulations we show that the mean-square displacement at criticality is characterized by r2(t) t2k with an exponent k depending sensitively on the time regime considered. For times below tx(1)l-a1 (a14 in d=2 and a15 in d=3), we recover the results of Halperin et al., k13 in d=2 and k0.18 in d=3, which apply in the limit l0. In a wide intermediate time regime tx(1)tx(2) we predict the exponents k from the overlapping Lorentz gas. © 1989 The American Physical Society.
Articolo in rivista - Articolo scientifico
random walks, continuum percolation, swiss cheese model, finite jump distance
English
1989
39
1
893
896
none
Petersen, J., Roman, H., Bunde, A., Dieterich, W. (1989). Nonuniversality of transport exponents in continuum percolation systems: Effects of finite jump distance. PHYSICAL REVIEW. B, CONDENSED MATTER, 39(1), 893-896 [10.1103/PhysRevB.39.893].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/326804
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
Social impact