Electronic structure calculations provide a useful complement to experimental characterization tools in the atomic-scale design of semiconductor heterojunctions for photocatalysis. The band alignment of the heterojunction is of fundamental importance to achieve an efficient charge carrier separation, so as to reduce electron/hole recombination and improve photoactivity. The accurate prediction of the offsets of valence and conduction bands in the constituent units is thus of key importance but poses several methodological and practical problems. In this Minireview we address some of these problems by considering selected examples of binary and ternary semiconductor heterojunctions and how these are determined at the level of density functional theory (DFT). The atomically precise description of the interface, the consequent charge polarization, the role of quantum confinement, the possibility to use facet engineering to determine a specific band alignment, are among the effects discussed, with particular attention to pros and cons of each one of these aspects. This analysis shows the increasingly important role of accurate electronic structure calculations to drive the design and the preparation of new interfaces with desired properties.
Di Liberto, G., Cipriano, L., Tosoni, S., Pacchioni, G. (2021). Rational Design of Semiconductor Heterojunctions for Photocatalysis. CHEMISTRY-A EUROPEAN JOURNAL, 27(53), 13306-13317 [10.1002/chem.202101764].
Rational Design of Semiconductor Heterojunctions for Photocatalysis
Di Liberto G.;Cipriano L. A.;Tosoni S.;Pacchioni G.
2021
Abstract
Electronic structure calculations provide a useful complement to experimental characterization tools in the atomic-scale design of semiconductor heterojunctions for photocatalysis. The band alignment of the heterojunction is of fundamental importance to achieve an efficient charge carrier separation, so as to reduce electron/hole recombination and improve photoactivity. The accurate prediction of the offsets of valence and conduction bands in the constituent units is thus of key importance but poses several methodological and practical problems. In this Minireview we address some of these problems by considering selected examples of binary and ternary semiconductor heterojunctions and how these are determined at the level of density functional theory (DFT). The atomically precise description of the interface, the consequent charge polarization, the role of quantum confinement, the possibility to use facet engineering to determine a specific band alignment, are among the effects discussed, with particular attention to pros and cons of each one of these aspects. This analysis shows the increasingly important role of accurate electronic structure calculations to drive the design and the preparation of new interfaces with desired properties.File | Dimensione | Formato | |
---|---|---|---|
10281-326409_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
3.33 MB
Formato
Adobe PDF
|
3.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.