Electronic structure calculations provide a useful complement to experimental characterization tools in the atomic-scale design of semiconductor heterojunctions for photocatalysis. The band alignment of the heterojunction is of fundamental importance to achieve an efficient charge carrier separation, so as to reduce electron/hole recombination and improve photoactivity. The accurate prediction of the offsets of valence and conduction bands in the constituent units is thus of key importance but poses several methodological and practical problems. In this Minireview we address some of these problems by considering selected examples of binary and ternary semiconductor heterojunctions and how these are determined at the level of density functional theory (DFT). The atomically precise description of the interface, the consequent charge polarization, the role of quantum confinement, the possibility to use facet engineering to determine a specific band alignment, are among the effects discussed, with particular attention to pros and cons of each one of these aspects. This analysis shows the increasingly important role of accurate electronic structure calculations to drive the design and the preparation of new interfaces with desired properties.

Di Liberto, G., Cipriano, L., Tosoni, S., Pacchioni, G. (2021). Rational Design of Semiconductor Heterojunctions for Photocatalysis. CHEMISTRY-A EUROPEAN JOURNAL, 27(53), 13306-13317 [10.1002/chem.202101764].

Rational Design of Semiconductor Heterojunctions for Photocatalysis

Di Liberto G.;Tosoni S.;Pacchioni G.
2021

Abstract

Electronic structure calculations provide a useful complement to experimental characterization tools in the atomic-scale design of semiconductor heterojunctions for photocatalysis. The band alignment of the heterojunction is of fundamental importance to achieve an efficient charge carrier separation, so as to reduce electron/hole recombination and improve photoactivity. The accurate prediction of the offsets of valence and conduction bands in the constituent units is thus of key importance but poses several methodological and practical problems. In this Minireview we address some of these problems by considering selected examples of binary and ternary semiconductor heterojunctions and how these are determined at the level of density functional theory (DFT). The atomically precise description of the interface, the consequent charge polarization, the role of quantum confinement, the possibility to use facet engineering to determine a specific band alignment, are among the effects discussed, with particular attention to pros and cons of each one of these aspects. This analysis shows the increasingly important role of accurate electronic structure calculations to drive the design and the preparation of new interfaces with desired properties.
Articolo in rivista - Articolo scientifico
band gaps; band offsets; density functional calculations; heterojunctions; photocatalysis;
English
15-lug-2021
2021
27
53
13306
13317
none
Di Liberto, G., Cipriano, L., Tosoni, S., Pacchioni, G. (2021). Rational Design of Semiconductor Heterojunctions for Photocatalysis. CHEMISTRY-A EUROPEAN JOURNAL, 27(53), 13306-13317 [10.1002/chem.202101764].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/326409
Citazioni
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 40
Social impact