Interactions among multiple time series of positive random variables are crucial in diverse financial applications, from spillover effects to volatility interdependence. A popular model in this setting is the vector Multiplicative Error Model (vMEM) which poses a linear iterative structure on the dynamics of the conditional mean, perturbed by a multiplicative innovation term. A main limitation of vMEM is however its restrictive assumption on the distribution of the random innovation term. A Bayesian semiparametric approach that models the innovation vector as an infinite location-scale mixture of multidimensional kernels with support on the positive orthant is used to address this major shortcoming of vMEM. Computational complications arising from the constraints to the positive orthant are avoided through the formulation of a slice sampler on the parameter-extended unconstrained version of the model. The method is applied to simulated and real data and a flexible specification is obtained that outperforms the classical ones in terms of fitting and predictive power.
Donelli, N., Peluso, S., Mira, A. (2021). A Bayesian semiparametric vector Multiplicative Error Model. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 161(September 2021) [10.1016/j.csda.2021.107242].
A Bayesian semiparametric vector Multiplicative Error Model
Donelli N.;Peluso S.
;
2021
Abstract
Interactions among multiple time series of positive random variables are crucial in diverse financial applications, from spillover effects to volatility interdependence. A popular model in this setting is the vector Multiplicative Error Model (vMEM) which poses a linear iterative structure on the dynamics of the conditional mean, perturbed by a multiplicative innovation term. A main limitation of vMEM is however its restrictive assumption on the distribution of the random innovation term. A Bayesian semiparametric approach that models the innovation vector as an infinite location-scale mixture of multidimensional kernels with support on the positive orthant is used to address this major shortcoming of vMEM. Computational complications arising from the constraints to the positive orthant are avoided through the formulation of a slice sampler on the parameter-extended unconstrained version of the model. The method is applied to simulated and real data and a flexible specification is obtained that outperforms the classical ones in terms of fitting and predictive power.File | Dimensione | Formato | |
---|---|---|---|
Donelli-2021-Computational Statistics and Data Analysis-Arxiv-Preprint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
2.79 MB
Formato
Adobe PDF
|
2.79 MB | Adobe PDF | Visualizza/Apri |
Donelli-2021-Computational Statistics and Data Analysis-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.85 MB
Formato
Adobe PDF
|
1.85 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.