The formation of multiple proteoforms by post-translational modifications (PTMs) enables a single protein to acquire distinct functional roles in its biological context. Oxidation of methionine residues (Met) is a common PTM, involved in physiological (e.g., signaling) and pathological (e.g., oxidative stress) states. This PTM typically maps at multiple protein sites, generating a heterogeneous population of proteoforms with specific biophysical and biochemical properties. The identification and quantitation of the variety of oxidized proteoforms originated under a given condition is required to assess the exact molecular nature of the species responsible for the process under investigation. In this work, the binding and oxidation of human β-synuclein (BS) by dopamine (DA) has been explored. Native mass spectrometry (MS) has been employed to analyze the interaction of BS with DA. In a second step, top-down fragmentation of the intact protein from denaturing conditions has been performed to identify and quantify the distinct proteoforms generated by DA-induced oxidation. The analysis of isobaric proteoforms is approached by a combination of electron-transfer dissociation (ETD) at each extent of modification, quantitation of methionine-containing fragments and combinatorial analysis of the fragmentation products by multiple linear regression. This procedure represents a promising approach to systematic assessment of proteoforms variety and their relative abundance. The method can be adapted, in principle, to any protein containing any number of methionine residues, allowing for a full structural characterization of the protein oxidation states.

Luise, A., De Cecco, E., Ponzini, E., Sollazzo, M., Mauri, P., Sobott, F., et al. (2021). Profiling Dopamine-Induced Oxidized Proteoforms of β-synuclein by Top-Down Mass Spectrometry. ANTIOXIDANTS, 10(6) [10.3390/antiox10060893].

Profiling Dopamine-Induced Oxidized Proteoforms of β-synuclein by Top-Down Mass Spectrometry

Ponzini, Erika;Grandori, Rita;Santambrogio, Carlo
2021

Abstract

The formation of multiple proteoforms by post-translational modifications (PTMs) enables a single protein to acquire distinct functional roles in its biological context. Oxidation of methionine residues (Met) is a common PTM, involved in physiological (e.g., signaling) and pathological (e.g., oxidative stress) states. This PTM typically maps at multiple protein sites, generating a heterogeneous population of proteoforms with specific biophysical and biochemical properties. The identification and quantitation of the variety of oxidized proteoforms originated under a given condition is required to assess the exact molecular nature of the species responsible for the process under investigation. In this work, the binding and oxidation of human β-synuclein (BS) by dopamine (DA) has been explored. Native mass spectrometry (MS) has been employed to analyze the interaction of BS with DA. In a second step, top-down fragmentation of the intact protein from denaturing conditions has been performed to identify and quantify the distinct proteoforms generated by DA-induced oxidation. The analysis of isobaric proteoforms is approached by a combination of electron-transfer dissociation (ETD) at each extent of modification, quantitation of methionine-containing fragments and combinatorial analysis of the fragmentation products by multiple linear regression. This procedure represents a promising approach to systematic assessment of proteoforms variety and their relative abundance. The method can be adapted, in principle, to any protein containing any number of methionine residues, allowing for a full structural characterization of the protein oxidation states.
Articolo in rivista - Articolo scientifico
Dopamine oxidation; Human β-synuclein; Methionine sulfoxide; Proteoforms relative quantitation; Top-down mass spectrometry;
English
1-giu-2021
2021
10
6
893
open
Luise, A., De Cecco, E., Ponzini, E., Sollazzo, M., Mauri, P., Sobott, F., et al. (2021). Profiling Dopamine-Induced Oxidized Proteoforms of β-synuclein by Top-Down Mass Spectrometry. ANTIOXIDANTS, 10(6) [10.3390/antiox10060893].
File in questo prodotto:
File Dimensione Formato  
2021_Luise_Antioxidants.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 2.85 MB
Formato Adobe PDF
2.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/316278
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact