We study 3-dimensional Poincaré duality pro-p groups in the spirit of the work by Robert Bieri and Jonathan Hillmann, and show that if such a pro-p group G has a nontrivial finitely presented subnormal subgroup of infinite index, then either the subgroup is cyclic and normal or the subgroup is cyclic and the group is polycyclic or the subgroup is Demushkin and normal in an open subgroup of G. Also, we describe the centralizers of finitely generated subgroups of 3-dimensional Poincaré duality pro-p groups.

Castellano, I., Zalesskii, P. (2021). Subgroups of pro-p PD3 -groups. MONATSHEFTE FÜR MATHEMATIK, 195(3), 391-400 [10.1007/s00605-020-01505-5].

Subgroups of pro-p PD3 -groups

Castellano I.
;
2021

Abstract

We study 3-dimensional Poincaré duality pro-p groups in the spirit of the work by Robert Bieri and Jonathan Hillmann, and show that if such a pro-p group G has a nontrivial finitely presented subnormal subgroup of infinite index, then either the subgroup is cyclic and normal or the subgroup is cyclic and the group is polycyclic or the subgroup is Demushkin and normal in an open subgroup of G. Also, we describe the centralizers of finitely generated subgroups of 3-dimensional Poincaré duality pro-p groups.
Articolo in rivista - Articolo scientifico
Centralizers; Demushkin groups; Poincaré duality; Pro-p groups; Subgroups of pro-pPD; n; -groups;
English
4-gen-2021
2021
195
3
391
400
open
Castellano, I., Zalesskii, P. (2021). Subgroups of pro-p PD3 -groups. MONATSHEFTE FÜR MATHEMATIK, 195(3), 391-400 [10.1007/s00605-020-01505-5].
File in questo prodotto:
File Dimensione Formato  
Pro_p subgroups _ IRIS.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 292.22 kB
Formato Adobe PDF
292.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/314190
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact