Recrystallization and structural recovery in alpha-decay damage in zircon samples have been studied using Raman spectroscopy. Fifteen zircon samples with different degrees of radiation damage have been thermally annealed between 600 K and 1800 K for up to 28 days and 8 hours. The experimental results from this study reveal that recrystallization in the damaged zircon samples is a multi-stage process that depends on the degree of initial damage of the samples. In partially damaged samples the lattice recovery of damaged crystalline ZrSiO4 takes place at temperatures as low as about 700 K, as shown by a remarkable band-sharpening and a significant increase in the frequencies of nu 1 and nu 3 Si-O stretching vibrations together with the external band near 357 cm-1 with increasing temperature. A dramatic increase of Raman scattering intensity of ZrSiO4 occurs in partially damaged samples near 1000 K due to a recrystallization process involving epitaxial growth. Heavily damaged samples tend to decompose into ZrO2 and SiO2 at high temperatures. Tetragonal ZrO2 has been observed under annealing between 1125 K and about 1600 K in heavily damaged samples while monoclinic ZrO2 appears above 1600 K. Weak signals from ZrSiO4 were detected at 1125 K in highly metamict zircon although the main recrystallization appears to occur near 1500 K accompanied by a decrease of the volumes of ZrO2 as well as SiO2. This suggests that this recrystallization is associated with the reaction of ZrO2 with SiO2 to form ZrSiO4 . A possible intermediate phase has been observed, for the first time, by Raman spectroscopy in damaged zircons annealed at temperatures between 800 K and 1400 K. This phase is characterized by strong, broad Raman signals near 670, 798 and 1175 cm-1 . Prolonged isothermal annealing at 1050 K results in a decrease of these characteristic bands and eventually the disappearance of this intermediate phase.

Zhang, M., Salje, E., Capitani, G., Leroux, H., Clark, A., Schlter, J., et al. (2000). Annealing of alpha-decay radiation damage in zircon: a Raman spectroscopic study. JOURNAL OF PHYSICS. CONDENSED MATTER, 12(13), 3131-3148 [10.1088/0953-8984/12/13/321].

Annealing of alpha-decay radiation damage in zircon: a Raman spectroscopic study

CAPITANI, GIANCARLO;
2000

Abstract

Recrystallization and structural recovery in alpha-decay damage in zircon samples have been studied using Raman spectroscopy. Fifteen zircon samples with different degrees of radiation damage have been thermally annealed between 600 K and 1800 K for up to 28 days and 8 hours. The experimental results from this study reveal that recrystallization in the damaged zircon samples is a multi-stage process that depends on the degree of initial damage of the samples. In partially damaged samples the lattice recovery of damaged crystalline ZrSiO4 takes place at temperatures as low as about 700 K, as shown by a remarkable band-sharpening and a significant increase in the frequencies of nu 1 and nu 3 Si-O stretching vibrations together with the external band near 357 cm-1 with increasing temperature. A dramatic increase of Raman scattering intensity of ZrSiO4 occurs in partially damaged samples near 1000 K due to a recrystallization process involving epitaxial growth. Heavily damaged samples tend to decompose into ZrO2 and SiO2 at high temperatures. Tetragonal ZrO2 has been observed under annealing between 1125 K and about 1600 K in heavily damaged samples while monoclinic ZrO2 appears above 1600 K. Weak signals from ZrSiO4 were detected at 1125 K in highly metamict zircon although the main recrystallization appears to occur near 1500 K accompanied by a decrease of the volumes of ZrO2 as well as SiO2. This suggests that this recrystallization is associated with the reaction of ZrO2 with SiO2 to form ZrSiO4 . A possible intermediate phase has been observed, for the first time, by Raman spectroscopy in damaged zircons annealed at temperatures between 800 K and 1400 K. This phase is characterized by strong, broad Raman signals near 670, 798 and 1175 cm-1 . Prolonged isothermal annealing at 1050 K results in a decrease of these characteristic bands and eventually the disappearance of this intermediate phase.
Articolo in rivista - Articolo scientifico
Zircon, annealing, radiation damage, recovery, Raman spectroscopy
English
2000
12
13
3131
3148
none
Zhang, M., Salje, E., Capitani, G., Leroux, H., Clark, A., Schlter, J., et al. (2000). Annealing of alpha-decay radiation damage in zircon: a Raman spectroscopic study. JOURNAL OF PHYSICS. CONDENSED MATTER, 12(13), 3131-3148 [10.1088/0953-8984/12/13/321].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/31410
Citazioni
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 122
Social impact