Precise correction of the CD40LG gene in T cells and hematopoietic stem/progenitor cells (HSPC) holds promise for treating X-linked hyper-IgM Syndrome (HIGM1), but its actual therapeutic potential remains elusive. Here, we developed a one-size-fits-all editing strategy for effective T-cell correction, selection, and depletion and investigated the therapeutic potential of T-cell and HSPC therapies in the HIGM1 mouse model. Edited patients’ derived CD4 T cells restored physiologically regulated CD40L expression and contact-dependent B-cell helper function. Adoptive transfer of wild-type T cells into conditioned HIGM1 mice rescued antigen-specific IgG responses and protected mice from a disease-relevant pathogen. We then obtained ~ 25% CD40LG editing in long-term repopulating human HSPC. Transplanting such proportion of wild-type HSPC in HIGM1 mice rescued immune functions similarly to T-cell therapy. Overall, our findings suggest that autologous edited T cells can provide immediate and substantial benefits to HIGM1 patients and position T-cell ahead of HSPC gene therapy because of easier translation, lower safety concerns and potentially comparable clinical benefits.

Vavassori, V., Mercuri, E., Marcovecchio, G., Castiello, M., Schiroli, G., Albano, L., et al. (2021). Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO MOLECULAR MEDICINE, 13(3 (5 March 2021)) [10.15252/emmm.202013545].

Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome

Mercuri E.;Beretta S.;Merelli I.;
2021

Abstract

Precise correction of the CD40LG gene in T cells and hematopoietic stem/progenitor cells (HSPC) holds promise for treating X-linked hyper-IgM Syndrome (HIGM1), but its actual therapeutic potential remains elusive. Here, we developed a one-size-fits-all editing strategy for effective T-cell correction, selection, and depletion and investigated the therapeutic potential of T-cell and HSPC therapies in the HIGM1 mouse model. Edited patients’ derived CD4 T cells restored physiologically regulated CD40L expression and contact-dependent B-cell helper function. Adoptive transfer of wild-type T cells into conditioned HIGM1 mice rescued antigen-specific IgG responses and protected mice from a disease-relevant pathogen. We then obtained ~ 25% CD40LG editing in long-term repopulating human HSPC. Transplanting such proportion of wild-type HSPC in HIGM1 mice rescued immune functions similarly to T-cell therapy. Overall, our findings suggest that autologous edited T cells can provide immediate and substantial benefits to HIGM1 patients and position T-cell ahead of HSPC gene therapy because of easier translation, lower safety concerns and potentially comparable clinical benefits.
Articolo in rivista - Articolo scientifico
CRISPR-Cas gene editing; hematopoietic stem cells; T-cell therapy; truncated EGFR; X-linked hyper-IgM Syndrome;
English
21-gen-2021
2021
13
3 (5 March 2021)
e13545
none
Vavassori, V., Mercuri, E., Marcovecchio, G., Castiello, M., Schiroli, G., Albano, L., et al. (2021). Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO MOLECULAR MEDICINE, 13(3 (5 March 2021)) [10.15252/emmm.202013545].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/311002
Citazioni
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 36
Social impact