Large slow rock-slope deformations, including deepseated gravitational slope deformations and large landslides, are widespread in alpine environments. They develop over thousands of years by progressive failure, resulting in slow movements that impact infrastructures and can eventually evolve into catastrophic rockslides. A robust characterization of their style of activity is thus required in a risk management perspective. We combine an original inventory of slow rock-slope deformations with different PS-InSAR and SqueeSAR datasets to develop a novel, semiautomated approach to characterize and classify 208 slow rockslope deformations in Lombardia (Italian Central Alps) based on their displacement rate, kinematics, heterogeneity and morphometric expression. Through a peak analysis of displacement rate distributions, we characterize the segmentation of mapped landslides and highlight the occurrence of nested sectors with differential activity and displacement rates. Combining 2D decomposition of InSAR velocity vectors and machine learning classification, we develop an automatic approach to characterize the kinematics of each landslide. Then, we sequentially combine principal component and K-medoids cluster analyses to identify groups of slow rock-slope deformations with consistent styles of activity. Our methodology is readily applicable to different landslide datasets and provides an objective and cost-effective support to land planning and the prioritization of local-scale studies aimed at granting safety and infrastructure integrity.
Crippa, C., Valbuzzi, E., Frattini, P., Crosta, G., Spreafico, M., Agliardi, F. (2021). Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data. LANDSLIDES, 18(7), 2445-2463 [10.1007/s10346-021-01654-0].
Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data
Crippa, Chiara
Primo
;Valbuzzi, Elena;Frattini, Paolo;Crosta, Giovanni;Spreafico, Margherita C.;Agliardi, FedericoUltimo
2021
Abstract
Large slow rock-slope deformations, including deepseated gravitational slope deformations and large landslides, are widespread in alpine environments. They develop over thousands of years by progressive failure, resulting in slow movements that impact infrastructures and can eventually evolve into catastrophic rockslides. A robust characterization of their style of activity is thus required in a risk management perspective. We combine an original inventory of slow rock-slope deformations with different PS-InSAR and SqueeSAR datasets to develop a novel, semiautomated approach to characterize and classify 208 slow rockslope deformations in Lombardia (Italian Central Alps) based on their displacement rate, kinematics, heterogeneity and morphometric expression. Through a peak analysis of displacement rate distributions, we characterize the segmentation of mapped landslides and highlight the occurrence of nested sectors with differential activity and displacement rates. Combining 2D decomposition of InSAR velocity vectors and machine learning classification, we develop an automatic approach to characterize the kinematics of each landslide. Then, we sequentially combine principal component and K-medoids cluster analyses to identify groups of slow rock-slope deformations with consistent styles of activity. Our methodology is readily applicable to different landslide datasets and provides an objective and cost-effective support to land planning and the prioritization of local-scale studies aimed at granting safety and infrastructure integrity.File | Dimensione | Formato | |
---|---|---|---|
Crippa2021_Article_Semi-automatedRegionalClassifi.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
4.2 MB
Formato
Adobe PDF
|
4.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.