In the present work we applied the use of the UAV-based Structure from Motion technique (SfM) to geological and geohazard studies, with emphasis placed on active tectonics and volcano-tectonics cases. Our aim is to obtain high-resolution orthomosaics and Digital Surface Models (DSMs) in two study areas: the Theistareykir Fissure Swarm within the Northern Volcanic Zone (NVZ) of Iceland and the active Khoko landslide, Enguri reservoir, in the Greater Caucasus, Georgia. The first is affected by seismic and volcanic hazard, the second by landslide and hydrogeological hazard. Regarding the NVZ, by analysing the resulting Orthomosaics and DSMs we collected a total of 453 quantitative measurements of the amount of opening and opening direction of Holocene extension fractures and 36 measurements of the height of fault scarps. These data allowed us to assess an overall spreading direction of N106.4° during Holocene times within the studied rift zone, which has been compared with geodetic motion vectors, and a stretching ratio of 1.013–1.017 for 8–10 ka old lava units. We conclude that deformation in the area is related to both dyke intrusions and extensional tectonics. In the Greater Caucasus, we applied the method to identify the main geomorphological features related to the Khoko landslide and to measure the scarp height of the principal slip surfaces, in order to improve geomorphological knowledge of the landslide, and contribute to the assessment of the hydrogeological hazard of the area. At a general level, our results suggest that the use of UAV-based SfM is a convenient and efficient way to collect plenty of data aimed at better assessing geohazards in areas prone to catastrophic natural phenomena like earthquakes, volcanic eruptions and landslides.

Bonali, F., Corti, N., Russo, E., Marchese, F., Fallati, L., Pasquare Mariotto, F., et al. (2021). Commercial-UAV-based structure from motion for geological and geohazard studies. In F.L. Bonali, F. Pasquaré Mariotto, N. Tsereteli (a cura di), Building Knowledge for Geohazard Assessment and Management in the Caucasus and other Orogenic Regions (pp. 389-427). Springer Netherlands [10.1007/978-94-024-2046-3_22].

Commercial-UAV-based structure from motion for geological and geohazard studies

Bonali F. L.;Corti N.
;
Russo E.;Marchese F.;Fallati L.;Tibaldi A.
2021

Abstract

In the present work we applied the use of the UAV-based Structure from Motion technique (SfM) to geological and geohazard studies, with emphasis placed on active tectonics and volcano-tectonics cases. Our aim is to obtain high-resolution orthomosaics and Digital Surface Models (DSMs) in two study areas: the Theistareykir Fissure Swarm within the Northern Volcanic Zone (NVZ) of Iceland and the active Khoko landslide, Enguri reservoir, in the Greater Caucasus, Georgia. The first is affected by seismic and volcanic hazard, the second by landslide and hydrogeological hazard. Regarding the NVZ, by analysing the resulting Orthomosaics and DSMs we collected a total of 453 quantitative measurements of the amount of opening and opening direction of Holocene extension fractures and 36 measurements of the height of fault scarps. These data allowed us to assess an overall spreading direction of N106.4° during Holocene times within the studied rift zone, which has been compared with geodetic motion vectors, and a stretching ratio of 1.013–1.017 for 8–10 ka old lava units. We conclude that deformation in the area is related to both dyke intrusions and extensional tectonics. In the Greater Caucasus, we applied the method to identify the main geomorphological features related to the Khoko landslide and to measure the scarp height of the principal slip surfaces, in order to improve geomorphological knowledge of the landslide, and contribute to the assessment of the hydrogeological hazard of the area. At a general level, our results suggest that the use of UAV-based SfM is a convenient and efficient way to collect plenty of data aimed at better assessing geohazards in areas prone to catastrophic natural phenomena like earthquakes, volcanic eruptions and landslides.
Capitolo o saggio
Caucasus; Geohazard; Iceland; Structure from motion; Tectonics; UAV or drone;
English
Building Knowledge for Geohazard Assessment and Management in the Caucasus and other Orogenic Regions
Bonali, FL; Pasquaré Mariotto, F; Tsereteli, N
2021
978-94-024-2045-6
Springer Netherlands
389
427
Bonali, F., Corti, N., Russo, E., Marchese, F., Fallati, L., Pasquare Mariotto, F., et al. (2021). Commercial-UAV-based structure from motion for geological and geohazard studies. In F.L. Bonali, F. Pasquaré Mariotto, N. Tsereteli (a cura di), Building Knowledge for Geohazard Assessment and Management in the Caucasus and other Orogenic Regions (pp. 389-427). Springer Netherlands [10.1007/978-94-024-2046-3_22].
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/305257
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
Social impact