We give a closed form evaluation of the zeta determinant of the Laplace operator on spheres and projective spaces that clearly describes the arithmetic structure of this number. All the factors in the final formula for the determinant are easily computable.

Hartmann, L., Spreafico, M. (2019). Zeta determinant of the Laplacian on the real projective spaces. INTERNATIONAL JOURNAL OF NUMBER THEORY, 15(2), 373-388 [10.1142/S1793042119500192].

Zeta determinant of the Laplacian on the real projective spaces

Spreafico M.
2019

Abstract

We give a closed form evaluation of the zeta determinant of the Laplace operator on spheres and projective spaces that clearly describes the arithmetic structure of this number. All the factors in the final formula for the determinant are easily computable.
Articolo in rivista - Articolo scientifico
operator determinant; operator zeta function; Regularized zeta determinants; Riemann zeta function;
English
2019
15
2
373
388
none
Hartmann, L., Spreafico, M. (2019). Zeta determinant of the Laplacian on the real projective spaces. INTERNATIONAL JOURNAL OF NUMBER THEORY, 15(2), 373-388 [10.1142/S1793042119500192].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/301343
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact