Non-Pt-group metal (non-PGM) materials based on transition metal-nitrogen-carbon (M-N-C) and derived from iron salt and aminoantipyrine (Fe-AAPyr) of mebendazole (Fe-MBZ) were studied for the first time as cathode catalysts in double-chamber microbial fuel cells (DCMFCs). The pH value of the cathode chamber was varied from 6 to 11 to elucidate the activity of those catalysts in acidic to basic conditions. The Fe-AAPyr- and Fe-MBZ-based cathodes were compared to a Pt-based cathode used as a baseline. Pt cathodes performed better at pH 6-7.5 and had similar performances at pH 9 and a substantially lower performance at pH 11 at which Fe-AAPyr and Fe-MBZ demonstrated their best electrocatalytic activity. The power density achieved with Pt constantly decreased from 94-99 μW cm-2 at pH 6 to 55-57 μW cm-2 at pH 11. In contrast, the power densities of DCMFs using Fe-AAPyr and Fe-MBZ were 61-68 μW cm-2 at pH 6, decreased to 51-58 μW cm-2 at pH 7.5, increased to 65-75 μW cm-2 at pH 9, and the highest power density was achieved at pH 11 (68-80 μW cm-2). Non-PGM cathode catalysts can be manufactured at the fraction of the cost of the Pt-based ones. The higher performance and lower cost indicates that non-PGM catalysts may be a viable materials choice in large-scale microbial fuel cells.

Santoro, C., Serov, A., Narvaez Villarrubia, C., Stariha, S., Babanova, S., Schuler, A., et al. (2015). Double Chamber MFC With Non Platinum Group Metal Fe-N-C Cathode Catalyst. CHEMSUSCHEM, 8(5), 828-834 [10.1002/cssc.201402570].

Double Chamber MFC With Non Platinum Group Metal Fe-N-C Cathode Catalyst

Santoro C
Primo
;
2015

Abstract

Non-Pt-group metal (non-PGM) materials based on transition metal-nitrogen-carbon (M-N-C) and derived from iron salt and aminoantipyrine (Fe-AAPyr) of mebendazole (Fe-MBZ) were studied for the first time as cathode catalysts in double-chamber microbial fuel cells (DCMFCs). The pH value of the cathode chamber was varied from 6 to 11 to elucidate the activity of those catalysts in acidic to basic conditions. The Fe-AAPyr- and Fe-MBZ-based cathodes were compared to a Pt-based cathode used as a baseline. Pt cathodes performed better at pH 6-7.5 and had similar performances at pH 9 and a substantially lower performance at pH 11 at which Fe-AAPyr and Fe-MBZ demonstrated their best electrocatalytic activity. The power density achieved with Pt constantly decreased from 94-99 μW cm-2 at pH 6 to 55-57 μW cm-2 at pH 11. In contrast, the power densities of DCMFs using Fe-AAPyr and Fe-MBZ were 61-68 μW cm-2 at pH 6, decreased to 51-58 μW cm-2 at pH 7.5, increased to 65-75 μW cm-2 at pH 9, and the highest power density was achieved at pH 11 (68-80 μW cm-2). Non-PGM cathode catalysts can be manufactured at the fraction of the cost of the Pt-based ones. The higher performance and lower cost indicates that non-PGM catalysts may be a viable materials choice in large-scale microbial fuel cells.
Articolo in rivista - Articolo scientifico
platinum-free catalyst; cathode; ORR; microbial fuel cell;
English
2015
8
5
828
834
reserved
Santoro, C., Serov, A., Narvaez Villarrubia, C., Stariha, S., Babanova, S., Schuler, A., et al. (2015). Double Chamber MFC With Non Platinum Group Metal Fe-N-C Cathode Catalyst. CHEMSUSCHEM, 8(5), 828-834 [10.1002/cssc.201402570].
File in questo prodotto:
File Dimensione Formato  
Santoro_et_al-2015-ChemSusChem-2.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/301335
Citazioni
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 73
Social impact