Atomic layer deposition (ALD) is unsurpassed in its ability to create thin conformal coatings over very rough and/or porous materials. Yet although the coating thickness on flat surfaces can be measured by ellipsometry, characterization of these coatings on rough surfaces is difficult. Here, two techniques are demonstrated to provide such characterization of ALD-coated TiO2 over mesoporous SnO2 aerogel films on glass substrates, and insights are gained as to the ALD process. First, X-ray photoelectron spectroscopy (XPS) is used to determine the coating thickness over the aerogel, and the results (0.04 nm/cycle) agree well with ellipsometry on flat surfaces up to a coating thickness limit of about 6 nm. Second, quantitative analysis of SEM images of the aerogel cross section is used to determine porosity and roughness, from which coating thickness can be inferred. The analysis reveals increasing porosity from the aerogel/air interface to the aerogel/substrate interface, indicating a thicker ALD coating near the air side, which is consistent with tortuous diffusion through the pores limiting access of ALD precursors to deeper parts of the film. SEM-derived porosity is generally useful in a thin film because bulk methods like nitrogen physisorption or mercury porosimetry are impractical for use with thin-film samples. Therefore, in this study SEM was also used to characterize quantitatively the morphologogical changes in SnO2 aerogel thin films due to doping with Sb. This study can be used as a methodology to understand morphological changes in different types of porous and/or rough materials.

Correa Baena, J., Artyushkova, K., Santoro, C., Atanassov, P., Agrios, A. (2016). Morphological Characterization of ALD and Doping Effects on Mesoporous SnO2 Aerogels by XPS and Quantitative SEM Image Analysis. ACS APPLIED MATERIALS & INTERFACES, 8(15), 9849-9854 [10.1021/acsami.6b00019].

Morphological Characterization of ALD and Doping Effects on Mesoporous SnO2 Aerogels by XPS and Quantitative SEM Image Analysis

Santoro C;
2016

Abstract

Atomic layer deposition (ALD) is unsurpassed in its ability to create thin conformal coatings over very rough and/or porous materials. Yet although the coating thickness on flat surfaces can be measured by ellipsometry, characterization of these coatings on rough surfaces is difficult. Here, two techniques are demonstrated to provide such characterization of ALD-coated TiO2 over mesoporous SnO2 aerogel films on glass substrates, and insights are gained as to the ALD process. First, X-ray photoelectron spectroscopy (XPS) is used to determine the coating thickness over the aerogel, and the results (0.04 nm/cycle) agree well with ellipsometry on flat surfaces up to a coating thickness limit of about 6 nm. Second, quantitative analysis of SEM images of the aerogel cross section is used to determine porosity and roughness, from which coating thickness can be inferred. The analysis reveals increasing porosity from the aerogel/air interface to the aerogel/substrate interface, indicating a thicker ALD coating near the air side, which is consistent with tortuous diffusion through the pores limiting access of ALD precursors to deeper parts of the film. SEM-derived porosity is generally useful in a thin film because bulk methods like nitrogen physisorption or mercury porosimetry are impractical for use with thin-film samples. Therefore, in this study SEM was also used to characterize quantitatively the morphologogical changes in SnO2 aerogel thin films due to doping with Sb. This study can be used as a methodology to understand morphological changes in different types of porous and/or rough materials.
Articolo in rivista - Articolo scientifico
aerogels, tin oxide, porous electrodes, image processing, surface characterization;
English
2016
8
15
9849
9854
reserved
Correa Baena, J., Artyushkova, K., Santoro, C., Atanassov, P., Agrios, A. (2016). Morphological Characterization of ALD and Doping Effects on Mesoporous SnO2 Aerogels by XPS and Quantitative SEM Image Analysis. ACS APPLIED MATERIALS & INTERFACES, 8(15), 9849-9854 [10.1021/acsami.6b00019].
File in questo prodotto:
File Dimensione Formato  
acsami.6b00019.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 4.57 MB
Formato Adobe PDF
4.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/301307
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
Social impact