The scalability of bioelectrochemical systems is a key parameter for their practical implementation in the real-world. Up until now, only urine-fed self-stratifying microbial fuel cells (SSM-MFCs) have been shown to be scalable in width and length with limited power density losses. For practical reasons, the present work focuses on the scalability of SSM-MFCs in the one dimension that has not yet been investigated, namely height. Three different height conditions were considered (1 cm, 2 cm and 3 cm tall electrodes). The normalised power density of the 2 cm and 3 cm conditions were similar either during the durability test under a hydraulic retention time of ≈39 h (i.e. 15.74 ± 0.99 μW.cm−3) and during the polarisation experiments (i.e. 27.79 ± 0.92 μW.cm−3). Conversely, the 1 cm condition had lower power densities of 11.23 ± 0.07 μW.cm−3 and 17.73 ± 3.94 μW.cm−3 both during the durability test and the polarisation experiment, respectively. These results confirm that SSM-MFCs can be scaled in all 3 dimensions with minimal power density losses, with a minimum height threshold for the electrode comprised between 1 cm and 2 cm.
Walter, X., Santoro, C., Greenman, J., Ieropoulos, I. (2019). Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation. BIOELECTROCHEMISTRY, 127, 68-75 [10.1016/j.bioelechem.2019.01.004].
Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation
Santoro C
Secondo
;
2019
Abstract
The scalability of bioelectrochemical systems is a key parameter for their practical implementation in the real-world. Up until now, only urine-fed self-stratifying microbial fuel cells (SSM-MFCs) have been shown to be scalable in width and length with limited power density losses. For practical reasons, the present work focuses on the scalability of SSM-MFCs in the one dimension that has not yet been investigated, namely height. Three different height conditions were considered (1 cm, 2 cm and 3 cm tall electrodes). The normalised power density of the 2 cm and 3 cm conditions were similar either during the durability test under a hydraulic retention time of ≈39 h (i.e. 15.74 ± 0.99 μW.cm−3) and during the polarisation experiments (i.e. 27.79 ± 0.92 μW.cm−3). Conversely, the 1 cm condition had lower power densities of 11.23 ± 0.07 μW.cm−3 and 17.73 ± 3.94 μW.cm−3 both during the durability test and the polarisation experiment, respectively. These results confirm that SSM-MFCs can be scaled in all 3 dimensions with minimal power density losses, with a minimum height threshold for the electrode comprised between 1 cm and 2 cm.File | Dimensione | Formato | |
---|---|---|---|
Scalability published.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
647.16 kB
Formato
Adobe PDF
|
647.16 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.