The scalability of Microbial fuel cells (MFCs) is key to the development of stacks. A recent study has shown that self-stratifying membraneless MFCs (S-MFCs) could be scaled down to 2 cm without performance deterioration. However, the scaling-up limit of S-MFC is yet unknown. Here the study evaluates the scale-up height of S-MFCs treating urine, from 2 cm, 4 cm to 12 cm high electrodes. The electrochemical properties of the S-MFCs were investigated after steady-states were established, following a 70-days longevity study. The electrochemical properties of the 2 cm and 4 cm conditions were similar (5.45 ± 0.32 mW per cascade). Conversely, the 12 cm conditions had much lower power output (1.48 ± 0.15 mW). The biofilm on the 12 cm cathodes only developed on the upper 5–6 cm of the immersed part of the electrode suggesting that the cathodic reactions were the limiting factor. This hypothesis was confirmed by the cathode polarisations showing that the 12 cm S-MFC had low current density (1.64 ± 9.53 µA cm−2, at 0 mV) compared to the other two conditions taht had similar current densities (192.73 ± 20.35 µA cm−2, at 0 mV). These results indicate that S-MFC treating urine can only be scaled-up to an electrode height of around 5–6 cm before the performance is negatively affected.

Walter, X., Santoro, C., Greenman, J., Ieropoulos, I. (2020). Scalability and stacking of self-stratifying microbial fuel cells treating urine. BIOELECTROCHEMISTRY, 133 [10.1016/j.bioelechem.2020.107491].

Scalability and stacking of self-stratifying microbial fuel cells treating urine.

Santoro C
Secondo
;
2020

Abstract

The scalability of Microbial fuel cells (MFCs) is key to the development of stacks. A recent study has shown that self-stratifying membraneless MFCs (S-MFCs) could be scaled down to 2 cm without performance deterioration. However, the scaling-up limit of S-MFC is yet unknown. Here the study evaluates the scale-up height of S-MFCs treating urine, from 2 cm, 4 cm to 12 cm high electrodes. The electrochemical properties of the S-MFCs were investigated after steady-states were established, following a 70-days longevity study. The electrochemical properties of the 2 cm and 4 cm conditions were similar (5.45 ± 0.32 mW per cascade). Conversely, the 12 cm conditions had much lower power output (1.48 ± 0.15 mW). The biofilm on the 12 cm cathodes only developed on the upper 5–6 cm of the immersed part of the electrode suggesting that the cathodic reactions were the limiting factor. This hypothesis was confirmed by the cathode polarisations showing that the 12 cm S-MFC had low current density (1.64 ± 9.53 µA cm−2, at 0 mV) compared to the other two conditions taht had similar current densities (192.73 ± 20.35 µA cm−2, at 0 mV). These results indicate that S-MFC treating urine can only be scaled-up to an electrode height of around 5–6 cm before the performance is negatively affected.
Articolo in rivista - Articolo scientifico
Microbial fuel cell, Urine treatment, Scaling-up, Self-stratification, Power generation;
English
19-feb-2020
2020
133
107491
open
Walter, X., Santoro, C., Greenman, J., Ieropoulos, I. (2020). Scalability and stacking of self-stratifying microbial fuel cells treating urine. BIOELECTROCHEMISTRY, 133 [10.1016/j.bioelechem.2020.107491].
File in questo prodotto:
File Dimensione Formato  
Scalability and stacking.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/301188
Citazioni
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 24
Social impact