Power output limitation is one of the main challenges that needs to be addressed for full-scale applications of the Microbial Fuel Cell (MFC) technology. Previous studies have examined electrochemical performance of different cathode electrodes including the development of novel iron based electrocatalysts, however the long-term investigation into continuously operating systems is rare. This work aims to study the application of platinum group metals-free (PGM-free) catalysts integrated into an air-breathing cathode of the microbial fuel cell operating on activated sewage sludge and supplemented with acetate as the carbon energy source. The maximum power density up to 1.3 Wm−2 (54 Wm−3) obtained with iron aminoantipyrine (Fe-AAPyr) catalyst is the highest reported in this type of MFC and shows stability and improvement in long term operation when continuously operated on wastewater. It also investigates the ability of this catalyst to facilitate water extraction from the anode and electroosmotic production of clean catholyte. The electrochemical kinetic extraction of catholyte in the cathode chamber shows correlation with power performance and produces a newly synthesised solution with a high pH > 13, suggesting caustic content. This shows an active electrolytic treatment of wastewater by active ionic and pH splitting in an electricity producing MFC.

Gajda, I., Greenman, J., Santoro, C., Serov, A., Melhuish, C., Atanassov, P., et al. (2018). Improved power and long term performance of Microbial Fuel Cell with Fe-N-C catalyst in air-breathing cathode. ENERGY, 144, 1073-1079 [10.1016/j.energy.2017.11.135].

Improved power and long term performance of Microbial Fuel Cell with Fe-N-C catalyst in air-breathing cathode.

Santoro C;
2018

Abstract

Power output limitation is one of the main challenges that needs to be addressed for full-scale applications of the Microbial Fuel Cell (MFC) technology. Previous studies have examined electrochemical performance of different cathode electrodes including the development of novel iron based electrocatalysts, however the long-term investigation into continuously operating systems is rare. This work aims to study the application of platinum group metals-free (PGM-free) catalysts integrated into an air-breathing cathode of the microbial fuel cell operating on activated sewage sludge and supplemented with acetate as the carbon energy source. The maximum power density up to 1.3 Wm−2 (54 Wm−3) obtained with iron aminoantipyrine (Fe-AAPyr) catalyst is the highest reported in this type of MFC and shows stability and improvement in long term operation when continuously operated on wastewater. It also investigates the ability of this catalyst to facilitate water extraction from the anode and electroosmotic production of clean catholyte. The electrochemical kinetic extraction of catholyte in the cathode chamber shows correlation with power performance and produces a newly synthesised solution with a high pH > 13, suggesting caustic content. This shows an active electrolytic treatment of wastewater by active ionic and pH splitting in an electricity producing MFC.
Articolo in rivista - Articolo scientifico
Microbial fuel cell, Cathode catalyst ,Catholyte extraction, Caustic catholyte, Electro-osmosis;
English
2018
144
1073
1079
open
Gajda, I., Greenman, J., Santoro, C., Serov, A., Melhuish, C., Atanassov, P., et al. (2018). Improved power and long term performance of Microbial Fuel Cell with Fe-N-C catalyst in air-breathing cathode. ENERGY, 144, 1073-1079 [10.1016/j.energy.2017.11.135].
File in questo prodotto:
File Dimensione Formato  
energy published.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 959.41 kB
Formato Adobe PDF
959.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/301085
Citazioni
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 68
Social impact