Because of the unavoidable intrinsic noise affecting biochemical processes, a stochastic approach is usually preferred whenever a deterministic model gives too rough information or, worse, may lead to erroneous qualitative behaviors and/or quantitatively wrong results. In this work we focus on the chemical master equation (CME)-based method which provides an accurate stochastic description of complex biochemical reaction networks in terms of the probability distribution of the underlying chemical populations. Indeed, deterministic models can be dealt with as first-order approximations of the average-value dynamics coming from the stochastic CME approach. Here we investigate the double phosphorylation/dephosphorylation cycle, a well-studied enzymatic reaction network where the inherent double time scale requires one to exploit quasisteady state approximation (QSSA) approaches to infer qualitative and quantitative information. Within the deterministic realm, several researchers have deeply investigated the use of the proper QSSA, agreeing to highlight that only one type of QSSA (the total QSSA) is able to faithfully replicate the qualitative behavior of bistability occurrences, as well as the correct assessment of the equilibrium points, accordingly to the not approximated (full) model. Based on recent results providing CME solutions that do not resort to Monte Carlo simulations, the proposed stochastic approach shows some counterintuitive facts arising when trying to straightforwardly transfer bistability deterministic results into the stochastic realm, and suggests how to handle such cases according to both theoretical and numerical results.

Bersani, A., Borri, A., Carravetta, F., Mavelli, G., Palumbo, P. (2020). On a stochastic approach to model the double phosphorylation/dephosphorylation cycle. MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 8(4), 261-285 [10.2140/MEMOCS.2020.8.261].

On a stochastic approach to model the double phosphorylation/dephosphorylation cycle

PALUMBO P.
Ultimo
2020

Abstract

Because of the unavoidable intrinsic noise affecting biochemical processes, a stochastic approach is usually preferred whenever a deterministic model gives too rough information or, worse, may lead to erroneous qualitative behaviors and/or quantitatively wrong results. In this work we focus on the chemical master equation (CME)-based method which provides an accurate stochastic description of complex biochemical reaction networks in terms of the probability distribution of the underlying chemical populations. Indeed, deterministic models can be dealt with as first-order approximations of the average-value dynamics coming from the stochastic CME approach. Here we investigate the double phosphorylation/dephosphorylation cycle, a well-studied enzymatic reaction network where the inherent double time scale requires one to exploit quasisteady state approximation (QSSA) approaches to infer qualitative and quantitative information. Within the deterministic realm, several researchers have deeply investigated the use of the proper QSSA, agreeing to highlight that only one type of QSSA (the total QSSA) is able to faithfully replicate the qualitative behavior of bistability occurrences, as well as the correct assessment of the equilibrium points, accordingly to the not approximated (full) model. Based on recent results providing CME solutions that do not resort to Monte Carlo simulations, the proposed stochastic approach shows some counterintuitive facts arising when trying to straightforwardly transfer bistability deterministic results into the stochastic realm, and suggests how to handle such cases according to both theoretical and numerical results.
Articolo in rivista - Articolo scientifico
chemical master equation; deterministic and stochastic processes; Markov processes; Michaelis–Menten kinetics; phosphorylation; quasisteady state approximation;
English
2020
8
4
261
285
open
Bersani, A., Borri, A., Carravetta, F., Mavelli, G., Palumbo, P. (2020). On a stochastic approach to model the double phosphorylation/dephosphorylation cycle. MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 8(4), 261-285 [10.2140/MEMOCS.2020.8.261].
File in questo prodotto:
File Dimensione Formato  
Bersani_rev.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 317.84 kB
Formato Adobe PDF
317.84 kB Adobe PDF Visualizza/Apri
10281-301012_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Altro
Dimensione 933.79 kB
Formato Adobe PDF
933.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/301012
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
Social impact