Many interpretations have been proposed to explain the presence of jarosite within Martian surficial sediments, including the possibility that it precipitated within paleo-ice deposits owing to englacial weathering of dust. However, until now a similar geochemical process was not observed on Earth nor in other planetary settings. We report a multi-analytical indication of jarosite formation within deep ice. Below 1000 m depth, jarosite crystals adhering on residual silica-rich particles have been identified in the Talos Dome ice core (East Antarctica) and interpreted as products of weathering involving aeolian dust and acidic atmospheric aerosols. The progressive increase of ice metamorphism and re-crystallization with depth, favours the relocation and concentration of dust and the formation of acidic brines in isolated environments, allowing chemical reactions and mineral neo-formation to occur. This is the first described englacial diagenetic mechanism occurring in deep Antarctic ice and supports the ice-weathering model for jarosite formation on Mars, highlighting the geologic importance of paleo ice-related processes on this planet. Additional implications concern the preservation of dust-related signals in deep ice cores with respect to paleoclimatic reconstructions and the englacial history of meteorites from Antarctic blue ice fields.

Baccolo, G., Delmonte, B., Niles, P., Cibin, G., Di Stefano, E., Hampai, D., et al. (2021). Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars. NATURE COMMUNICATIONS, 12(1) [10.1038/s41467-020-20705-z].

Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars

Baccolo, Giovanni
;
Delmonte, Barbara;Di Stefano, Elena;Maggi, Valter;
2021

Abstract

Many interpretations have been proposed to explain the presence of jarosite within Martian surficial sediments, including the possibility that it precipitated within paleo-ice deposits owing to englacial weathering of dust. However, until now a similar geochemical process was not observed on Earth nor in other planetary settings. We report a multi-analytical indication of jarosite formation within deep ice. Below 1000 m depth, jarosite crystals adhering on residual silica-rich particles have been identified in the Talos Dome ice core (East Antarctica) and interpreted as products of weathering involving aeolian dust and acidic atmospheric aerosols. The progressive increase of ice metamorphism and re-crystallization with depth, favours the relocation and concentration of dust and the formation of acidic brines in isolated environments, allowing chemical reactions and mineral neo-formation to occur. This is the first described englacial diagenetic mechanism occurring in deep Antarctic ice and supports the ice-weathering model for jarosite formation on Mars, highlighting the geologic importance of paleo ice-related processes on this planet. Additional implications concern the preservation of dust-related signals in deep ice cores with respect to paleoclimatic reconstructions and the englacial history of meteorites from Antarctic blue ice fields.
Articolo in rivista - Articolo scientifico
Scientifica
Antarctica, ice core, Planetary sciences, Mars, Jarosite, mineral dust;
English
Baccolo, G., Delmonte, B., Niles, P., Cibin, G., Di Stefano, E., Hampai, D., et al. (2021). Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars. NATURE COMMUNICATIONS, 12(1) [10.1038/s41467-020-20705-z].
Baccolo, G; Delmonte, B; Niles, P; Cibin, G; Di Stefano, E; Hampai, D; Keller, L; Maggi, V; Marcelli, A; Michalski, J; Snead, C; Frezzotti, M
File in questo prodotto:
File Dimensione Formato  
s41467-020-20705-z.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10281/299969
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
Social impact