The use of network technology to provide online courses is the latest trend in the training and development industry and has been defined as the “e-Learning revolution”. On the other hand, Online Social Networks (OSNs) represent today an effective possibility to have common and easy-to-use platforms for supporting e-Learning activities. However, as underlined by previous studies, many of the proposed e-Learning systems can result in confusion and decrease the learner’s interest. In this paper, we introduce the possibility to form e-Learning classes in the context of OSNs. At the best of our knowledge, any of the approaches proposed in the past considers the evolution of on-line classes as a problem of matching the individual users’ profiles with the profiles of the classes. In this paper, we propose an algorithm that exploits a multi-agent system to suitably distribute such a matching computation on all the user devices. The good effectiveness and the promising efficiency of our approach is shown by the experimental results obtained on simulated On-line Social Networks data.
De Meo, P., Fotia, L., Messina, F., Rosaci, D., Sarne', G. (2017). Forming classes in an e-Learning social network scenario. Intervento presentato a: International Symposium on Intelligent and Distributed Computing (IDC 2016), Paris, France.
Forming classes in an e-Learning social network scenario
SARNE' G
2017
Abstract
The use of network technology to provide online courses is the latest trend in the training and development industry and has been defined as the “e-Learning revolution”. On the other hand, Online Social Networks (OSNs) represent today an effective possibility to have common and easy-to-use platforms for supporting e-Learning activities. However, as underlined by previous studies, many of the proposed e-Learning systems can result in confusion and decrease the learner’s interest. In this paper, we introduce the possibility to form e-Learning classes in the context of OSNs. At the best of our knowledge, any of the approaches proposed in the past considers the evolution of on-line classes as a problem of matching the individual users’ profiles with the profiles of the classes. In this paper, we propose an algorithm that exploits a multi-agent system to suitably distribute such a matching computation on all the user devices. The good effectiveness and the promising efficiency of our approach is shown by the experimental results obtained on simulated On-line Social Networks data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.