We study decay and compact support properties of positive and bounded solutions of Δpu≥Λ(u) on the exterior of a compact set of a complete manifold with rotational symmetry. In the same setting, we also give a new characterization of stochastic completeness for the p-Laplacian in terms of a global W1,p-regularity of such solutions. One of the tools we use is a nonlinear version of the Feller property which we investigate on general Riemannian manifolds and which we establish under integral Ricci curvature conditions.

Bianchi, D., Pigola, S., Setti, A. (2020). Qualitative properties of bounded subsolutions of nonlinear PDEs. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 144, 137-163 [10.1016/j.matpur.2020.11.003].

Qualitative properties of bounded subsolutions of nonlinear PDEs

Pigola S.;
2020

Abstract

We study decay and compact support properties of positive and bounded solutions of Δpu≥Λ(u) on the exterior of a compact set of a complete manifold with rotational symmetry. In the same setting, we also give a new characterization of stochastic completeness for the p-Laplacian in terms of a global W1,p-regularity of such solutions. One of the tools we use is a nonlinear version of the Feller property which we investigate on general Riemannian manifolds and which we establish under integral Ricci curvature conditions.
Articolo in rivista - Articolo scientifico
Feller property; p-Laplacian; Stochastic completeness;
English
4-nov-2020
2020
144
137
163
partially_open
Bianchi, D., Pigola, S., Setti, A. (2020). Qualitative properties of bounded subsolutions of nonlinear PDEs. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 144, 137-163 [10.1016/j.matpur.2020.11.003].
File in questo prodotto:
File Dimensione Formato  
Bianchi-2020-JMPA-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 518.91 kB
Formato Adobe PDF
518.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Bianchi-2020-Arxiv-preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 316.7 kB
Formato Adobe PDF
316.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/296840
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
Social impact