Measurements of refractive indices, electro-optic coefficients and photorefractivity are performed for a set of Zirconium-doped congruent lithium niobate (Zr:LN) crystals as functions of the dopant concentration in the range 0.0-3.0 mol%. The photorefractive properties are studied by measuring the green-light induced birefringence change and by direct observation of the transmitted-beam distortion. The index of refraction data show that the threshold concentration, above which there is a change in the Zr incorporation mechanism, is about 2.0 mol%, but photorefractivity results suggest that the concentration of ZrO2 required to strongly reduce the photorefractive effect is somewhat larger than the 2.0 mol% "threshold" concentration derived from index-of-refraction data. The electro-optic coefficients are little influenced by Zr-doping. All the reported results confirm that Zr:LN is a very promising candidate for the realization of efficient electro-optic and all-optical nonlinear devices working at room temperature. © 2011 Optical Society of America.
Nava, G., Minzioni, P., Yan, W., Parravicini, J., Grando, D., Musso, E., et al. (2011). Zirconium-doped lithium niobate: Photorefractive and electro-optical properties as a function of dopant concentration. OPTICAL MATERIALS EXPRESS, 1(2), 270-277 [10.1364/OME.1.000270].
Zirconium-doped lithium niobate: Photorefractive and electro-optical properties as a function of dopant concentration
Parravicini J.;
2011
Abstract
Measurements of refractive indices, electro-optic coefficients and photorefractivity are performed for a set of Zirconium-doped congruent lithium niobate (Zr:LN) crystals as functions of the dopant concentration in the range 0.0-3.0 mol%. The photorefractive properties are studied by measuring the green-light induced birefringence change and by direct observation of the transmitted-beam distortion. The index of refraction data show that the threshold concentration, above which there is a change in the Zr incorporation mechanism, is about 2.0 mol%, but photorefractivity results suggest that the concentration of ZrO2 required to strongly reduce the photorefractive effect is somewhat larger than the 2.0 mol% "threshold" concentration derived from index-of-refraction data. The electro-optic coefficients are little influenced by Zr-doping. All the reported results confirm that Zr:LN is a very promising candidate for the realization of efficient electro-optic and all-optical nonlinear devices working at room temperature. © 2011 Optical Society of America.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.