The [1]benzothieno[3,2-b][1]benzothiophene (BTBT) planar system was used to functionalize the phthalocyanine ring aiming at synthesizing novel electron-rich π-conjugated macrocycles. The resulting ZnPc−BTBT and ZnPc−(BTBT)4 derivatives are the first two examples of a phthalocyanine subclass having potential use as solution-processable p-type organic semiconductors. In particular, the combination of experimental characterizations and theoretical calculations suggests compatible energy level alignments with mixed halide hybrid perovskite-based devices. Furthermore, ZnPc−(BTBT)4 features a high aggregation tendency, a useful tool to design compact molecular films. When tested as hole transport materials in perovskite solar cells under 100 mA cm−2 standard AM 1.5G solar illumination, ZnPc−(BTBT)4 gave power conversion efficiencies as high as 14.13 %, irrespective of the doping process generally required to achieve high photovoltaic performances. This work is a first step toward a new phthalocyanine core engineerization to obtain robust, yet more efficient and cost-effective materials for organic electronics and optoelectronics.

Zanotti, G., Angelini, N., Mattioli, G., Paoletti, A., Pennesi, G., Caschera, D., et al. (2020). [1]Benzothieno[3,2-b][1]benzothiophene-Phthalocyanine Derivatives: A Subclass of Solution-Processable Electron-Rich Hole Transport Materials. CHEMPLUSCHEM, 85(11), 2376-2386 [10.1002/cplu.202000281].

[1]Benzothieno[3,2-b][1]benzothiophene-Phthalocyanine Derivatives: A Subclass of Solution-Processable Electron-Rich Hole Transport Materials

Beverina L.;Calascibetta A. M.;Sanzone A.;
2020

Abstract

The [1]benzothieno[3,2-b][1]benzothiophene (BTBT) planar system was used to functionalize the phthalocyanine ring aiming at synthesizing novel electron-rich π-conjugated macrocycles. The resulting ZnPc−BTBT and ZnPc−(BTBT)4 derivatives are the first two examples of a phthalocyanine subclass having potential use as solution-processable p-type organic semiconductors. In particular, the combination of experimental characterizations and theoretical calculations suggests compatible energy level alignments with mixed halide hybrid perovskite-based devices. Furthermore, ZnPc−(BTBT)4 features a high aggregation tendency, a useful tool to design compact molecular films. When tested as hole transport materials in perovskite solar cells under 100 mA cm−2 standard AM 1.5G solar illumination, ZnPc−(BTBT)4 gave power conversion efficiencies as high as 14.13 %, irrespective of the doping process generally required to achieve high photovoltaic performances. This work is a first step toward a new phthalocyanine core engineerization to obtain robust, yet more efficient and cost-effective materials for organic electronics and optoelectronics.
Articolo in rivista - Articolo scientifico
hole transport; organic electronics; perovskite solar cells; photovoltaic devices; phthalocyanines
English
2376
2386
Zanotti, G., Angelini, N., Mattioli, G., Paoletti, A., Pennesi, G., Caschera, D., et al. (2020). [1]Benzothieno[3,2-b][1]benzothiophene-Phthalocyanine Derivatives: A Subclass of Solution-Processable Electron-Rich Hole Transport Materials. CHEMPLUSCHEM, 85(11), 2376-2386 [10.1002/cplu.202000281].
Zanotti, G; Angelini, N; Mattioli, G; Paoletti, A; Pennesi, G; Caschera, D; Sobolev, A; Beverina, L; Calascibetta, A; Sanzone, A; Di Carlo, A; Berionni Berna, B; Pescetelli, S; Agresti, A
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/294048
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
Social impact