In currently favoured hierarchical cosmologies, the formation of massive black hole binaries (MBHBs) following galaxy mergers is unavoidable. Still, due the complex physics governing the (hydro)dynamics of the post-merger dense environment of stars and gas in galactic nuclei, the final fate of those MBHBs is still unclear. In gas-rich environments, it is plausible that turbulence and gravitational instabilities feed gas to the nucleus in the form of a series of cold incoherent clumps, thus providing a way to exchange energy and angular momentum between the MBHB and its surroundings.Within this context, we present a suite of smoothed-particlehydrodynamical models to study the evolution of a sequence of near-radial turbulent gas clouds as they infall towards equal-mass, circular MBHBs.We focus on the dynamical response of the binary orbit to different levels of anisotropy of the incoherent accretion events. Compared to a model extrapolated from a set of individual cloud-MBHB interactions, we find that accretion increases considerably and the binary evolution is faster. This occurs because the continuous infall of clouds drags inwards circumbinary gas left behind by previous accretion events, thus promoting a more effective exchange of angular momentum between the MBHB and the gas. These results suggest that sub-parsec MBHBs efficiently evolve towards coalescence during the interaction with a sequence of individual gas pockets.

Goicovic, F., Maureira-Fredes, C., Sesana, A., Amaro-Seoane, P., Cuadra, J. (2018). Accretion of clumpy cold gas onto massive black hole binaries: A possible fast route to binary coalescence. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 479(3), 3438-3455 [10.1093/mnras/sty1709].

Accretion of clumpy cold gas onto massive black hole binaries: A possible fast route to binary coalescence

Sesana A.;
2018

Abstract

In currently favoured hierarchical cosmologies, the formation of massive black hole binaries (MBHBs) following galaxy mergers is unavoidable. Still, due the complex physics governing the (hydro)dynamics of the post-merger dense environment of stars and gas in galactic nuclei, the final fate of those MBHBs is still unclear. In gas-rich environments, it is plausible that turbulence and gravitational instabilities feed gas to the nucleus in the form of a series of cold incoherent clumps, thus providing a way to exchange energy and angular momentum between the MBHB and its surroundings.Within this context, we present a suite of smoothed-particlehydrodynamical models to study the evolution of a sequence of near-radial turbulent gas clouds as they infall towards equal-mass, circular MBHBs.We focus on the dynamical response of the binary orbit to different levels of anisotropy of the incoherent accretion events. Compared to a model extrapolated from a set of individual cloud-MBHB interactions, we find that accretion increases considerably and the binary evolution is faster. This occurs because the continuous infall of clouds drags inwards circumbinary gas left behind by previous accretion events, thus promoting a more effective exchange of angular momentum between the MBHB and the gas. These results suggest that sub-parsec MBHBs efficiently evolve towards coalescence during the interaction with a sequence of individual gas pockets.
Articolo in rivista - Articolo scientifico
Accretion, accretion discs; Black hole physics; Galaxies: evolution; Galaxies: nuclei; Hydrodynamics;
Accretion, accretion discs; Black hole physics; Galaxies: evolution; Galaxies: nuclei; Hydrodynamics
English
2018
479
3
3438
3455
none
Goicovic, F., Maureira-Fredes, C., Sesana, A., Amaro-Seoane, P., Cuadra, J. (2018). Accretion of clumpy cold gas onto massive black hole binaries: A possible fast route to binary coalescence. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 479(3), 3438-3455 [10.1093/mnras/sty1709].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/290591
Citazioni
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
Social impact