Glacial and paraglacial processes have a major influence on rock slope stability in alpine environments. Slope deglaciation causes debuttressing, stress and hydro-mechanical perturbations that promote progressive slope failure and the development of slow rock slope deformation possibly evolving until catastrophic failure. Paraglacial rock slope failures can develop soon after or thousands of years after deglaciation, and can creep slowly accelerating until catastrophic failure or nucleate sudden rockslides. The roles of topography, rock properties and deglaciation processes in promoting the different styles of paraglacial rock slope failure are still elusive. Nevertheless, their comprehensive understanding is crucial to manage future geohazards in modern paraglacial settings affected by ongoing climate change. We simulate the different modes and timing of paraglacial slope failures in an integrated numerical modelling approach that couples realistic deglaciation histories derived by modelling of ice dynamics to 2D time-dependent simulations of progressive failure processes. We performed a parametric study to assess the effects of initial ice thickness, deglaciation rate, rock-slope strength and valley shape on the mechanisms and timing of slope response to deglaciation. Our results allow constraining the range of conditions in which rapid failures or delayed slow deformations occur, which we compare to natural Alpine case studies. The melting of thicker glaciers is linked to shallower rockslides daylighting at higher elevation, with a shorter response time. More pronounced glacial morphologies influences slope lifecycle and favour the development of shallower, suspended rockslides. Weaker slopes and faster deglaciations produce to faster slope responses. In a risk-reduction perspective, we expect rockslide differentiation in valleys showing a strong glacial imprint, buried below thick ice sheets during glaciation.

Spreafico, M., Sternai, P., Agliardi, F. (2021). Paraglacial rock-slope deformations: sudden or delayed response? Insights from an integrated numerical modelling approach. LANDSLIDES, 18(4), 1311-1326 [10.1007/s10346-020-01560-x].

Paraglacial rock-slope deformations: sudden or delayed response? Insights from an integrated numerical modelling approach

Spreafico M. C.
Primo
;
Sternai P.;Agliardi F.
Ultimo
2021

Abstract

Glacial and paraglacial processes have a major influence on rock slope stability in alpine environments. Slope deglaciation causes debuttressing, stress and hydro-mechanical perturbations that promote progressive slope failure and the development of slow rock slope deformation possibly evolving until catastrophic failure. Paraglacial rock slope failures can develop soon after or thousands of years after deglaciation, and can creep slowly accelerating until catastrophic failure or nucleate sudden rockslides. The roles of topography, rock properties and deglaciation processes in promoting the different styles of paraglacial rock slope failure are still elusive. Nevertheless, their comprehensive understanding is crucial to manage future geohazards in modern paraglacial settings affected by ongoing climate change. We simulate the different modes and timing of paraglacial slope failures in an integrated numerical modelling approach that couples realistic deglaciation histories derived by modelling of ice dynamics to 2D time-dependent simulations of progressive failure processes. We performed a parametric study to assess the effects of initial ice thickness, deglaciation rate, rock-slope strength and valley shape on the mechanisms and timing of slope response to deglaciation. Our results allow constraining the range of conditions in which rapid failures or delayed slow deformations occur, which we compare to natural Alpine case studies. The melting of thicker glaciers is linked to shallower rockslides daylighting at higher elevation, with a shorter response time. More pronounced glacial morphologies influences slope lifecycle and favour the development of shallower, suspended rockslides. Weaker slopes and faster deglaciations produce to faster slope responses. In a risk-reduction perspective, we expect rockslide differentiation in valleys showing a strong glacial imprint, buried below thick ice sheets during glaciation.
Articolo in rivista - Articolo scientifico
Damage; Deglaciation; Numerical modelling; Paraglacial; Rock slope instability; Slope creep;
English
20-ott-2020
2021
18
4
1311
1326
open
Spreafico, M., Sternai, P., Agliardi, F. (2021). Paraglacial rock-slope deformations: sudden or delayed response? Insights from an integrated numerical modelling approach. LANDSLIDES, 18(4), 1311-1326 [10.1007/s10346-020-01560-x].
File in questo prodotto:
File Dimensione Formato  
Spreafico-et-al_2021_LASL.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 3.87 MB
Formato Adobe PDF
3.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/289442
Citazioni
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
Social impact