IR spectroscopy is one of the most commonly employed techniques to study molecular vibrations and interactions. However, characterization of experimental IR spectra is not always straightforward. This is the case of protonated glycine supramolecular systems like Gly2H+ and (GlyH + nH2), whose IR spectra raise questions which have still to find definitive answers even after theoretical spectroscopy investigations. Specifically, the assignment of the conformer responsible for the spectrum of the protonated glycine dimer (Gly2H+) has led to much controversy and it is still debated, while structural hypotheses formulated to explain the main experimental spectral features of (GlyH + nH2) systems have not been theoretically confirmed. We demonstrate that simulations must account for quantum dynamical effects in order to resolve these open issues. This is achieved by means of our divide-and-conquer semiclassical initial value representation technique, which approximates the quantum dynamics of high dimensional systems with remarkable accuracy and outperforms not only the commonly employed but unfit scaled-harmonic approaches, but also pure classical dynamics simulations. Besides the specific insights concerning the two particular cases presented here, the general conclusion is that, due to the widespread presence of protonated systems in chemistry, quantum dynamics may play a prominent role and should not be totally overlooked even when dealing with large systems including biological structures.

Gabas, F., Di Liberto, G., Conte, R., Ceotto, M. (2018). Protonated glycine supramolecular systems: The need for quantum dynamics. CHEMICAL SCIENCE, 9(41), 7894-7901 [10.1039/c8sc03041c].

Protonated glycine supramolecular systems: The need for quantum dynamics

Di Liberto, Giovanni;
2018

Abstract

IR spectroscopy is one of the most commonly employed techniques to study molecular vibrations and interactions. However, characterization of experimental IR spectra is not always straightforward. This is the case of protonated glycine supramolecular systems like Gly2H+ and (GlyH + nH2), whose IR spectra raise questions which have still to find definitive answers even after theoretical spectroscopy investigations. Specifically, the assignment of the conformer responsible for the spectrum of the protonated glycine dimer (Gly2H+) has led to much controversy and it is still debated, while structural hypotheses formulated to explain the main experimental spectral features of (GlyH + nH2) systems have not been theoretically confirmed. We demonstrate that simulations must account for quantum dynamical effects in order to resolve these open issues. This is achieved by means of our divide-and-conquer semiclassical initial value representation technique, which approximates the quantum dynamics of high dimensional systems with remarkable accuracy and outperforms not only the commonly employed but unfit scaled-harmonic approaches, but also pure classical dynamics simulations. Besides the specific insights concerning the two particular cases presented here, the general conclusion is that, due to the widespread presence of protonated systems in chemistry, quantum dynamics may play a prominent role and should not be totally overlooked even when dealing with large systems including biological structures.
Articolo in rivista - Articolo scientifico
semiclassical; SCIVR; spectra; spectroscopy; glycine
English
2018
9
41
7894
7901
open
Gabas, F., Di Liberto, G., Conte, R., Ceotto, M. (2018). Protonated glycine supramolecular systems: The need for quantum dynamics. CHEMICAL SCIENCE, 9(41), 7894-7901 [10.1039/c8sc03041c].
File in questo prodotto:
File Dimensione Formato  
Ceotto_18_ChemicalScience.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/289121
Citazioni
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 34
Social impact