Metal-supported hexagonal boron nitride monolayers (h-BN/M) are emerging as new potential electrocatalysts for various energy-related oxidation or reduction process. So far, several preparation methods have been developed to introduce, in a controlled way, defects such as vacancies or substitutional heteroatoms. Herein, we investigate by dispersion-corrected density functional theory (DFT) calculations, defective and metal-doped h-BN/Cu(111) systems as electrocatalysts for the hydrogen evolution reaction (HER). By calculating the hydrogen binding energy (ΔG*H) at different coverage conditions, we observe how the interaction between the defective/metal-doped h-BN layer and the Cu(111) substrate plays a key role in tuning the reactivity, leading to a thermoneutral hydrogen adsorption step (i.e., ΔG*H ≈ 0). These results could be generalized to other h-BN/M interfaces and may help their rational design for an improved H2-evolving electrocatalysis.
Perilli, D., Di Valentin, C., Studt, F. (2020). Can Single Metal Atoms Trapped in Defective h-BN/Cu(111) Improve Electrocatalysis of the H2 Evolution Reaction?. JOURNAL OF PHYSICAL CHEMISTRY. C, 124(43), 23690-23698 [10.1021/acs.jpcc.0c06750].
Can Single Metal Atoms Trapped in Defective h-BN/Cu(111) Improve Electrocatalysis of the H2 Evolution Reaction?
Perilli, Daniele;Di Valentin, Cristiana
;
2020
Abstract
Metal-supported hexagonal boron nitride monolayers (h-BN/M) are emerging as new potential electrocatalysts for various energy-related oxidation or reduction process. So far, several preparation methods have been developed to introduce, in a controlled way, defects such as vacancies or substitutional heteroatoms. Herein, we investigate by dispersion-corrected density functional theory (DFT) calculations, defective and metal-doped h-BN/Cu(111) systems as electrocatalysts for the hydrogen evolution reaction (HER). By calculating the hydrogen binding energy (ΔG*H) at different coverage conditions, we observe how the interaction between the defective/metal-doped h-BN layer and the Cu(111) substrate plays a key role in tuning the reactivity, leading to a thermoneutral hydrogen adsorption step (i.e., ΔG*H ≈ 0). These results could be generalized to other h-BN/M interfaces and may help their rational design for an improved H2-evolving electrocatalysis.File | Dimensione | Formato | |
---|---|---|---|
10281-288775_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
4.36 MB
Formato
Adobe PDF
|
4.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.