In the present work, we demonstrate how drone surveys coupled with structure-from-motion (SfM) photogrammetry can help to collect huge amounts of very detailed data even in rough terrains where logistics can affect classical field surveys. The area of study is located in the NW part of the Krafla Fissure Swarm (NE Iceland), a volcanotectonic rift composed of eruptive centres, extension fractures, and normal faults. The surveyed sector is characterized by the presence of a hyaloclastite ridge composed of deposits dated, on a stratigraphic basis, to the Weichselian High Glacial (29.1–12.1 ka BP), and a series of lava flows mostly dating back to 11–12 ka BP. The integration of remotely sensed surveys and field inspections enabled us to recognize that this segment of the Krafla rift is made of grabens arranged en-échelon with a left-stepping geometry. A major graben increases in width in correspondence of the hyaloclastite cone; we interpret this geometry as resulting from the mechanical contrast between the stiffer lava succession and the softer hyaloclastites, which favours the development of concentric faults. We also measured a total extension of 16.6 m and 11.2 m along the fractures affecting the lava units, and a total extension in the hyaloclastites of 29.3 m. This produces an extension rate of 1.4 mm/yr in the Holocene lavas and 1.7 ± 0.7 mm/yr in the Weichselian hyaloclastite deposits. The spreading direction we obtained for this area is N97.7° E, resulting from the av. of 568 opening direction values.
Bonali, F., Tibaldi, A., Corti, N., Fallati, L., Russo, E. (2020). Reconstruction of Late Pleistocene-Holocene Deformation through Massive Data Collection at Krafla Rift (NE Iceland) Owing to Drone-Based Structure-from-Motion Photogrammetry. APPLIED SCIENCES, 10(19), 1-24 [10.3390/app10196759].
Reconstruction of Late Pleistocene-Holocene Deformation through Massive Data Collection at Krafla Rift (NE Iceland) Owing to Drone-Based Structure-from-Motion Photogrammetry
Bonali, Fabio Luca
;Tibaldi, Alessandro;Corti, Noemi;Fallati, Luca;Russo, Elena
2020
Abstract
In the present work, we demonstrate how drone surveys coupled with structure-from-motion (SfM) photogrammetry can help to collect huge amounts of very detailed data even in rough terrains where logistics can affect classical field surveys. The area of study is located in the NW part of the Krafla Fissure Swarm (NE Iceland), a volcanotectonic rift composed of eruptive centres, extension fractures, and normal faults. The surveyed sector is characterized by the presence of a hyaloclastite ridge composed of deposits dated, on a stratigraphic basis, to the Weichselian High Glacial (29.1–12.1 ka BP), and a series of lava flows mostly dating back to 11–12 ka BP. The integration of remotely sensed surveys and field inspections enabled us to recognize that this segment of the Krafla rift is made of grabens arranged en-échelon with a left-stepping geometry. A major graben increases in width in correspondence of the hyaloclastite cone; we interpret this geometry as resulting from the mechanical contrast between the stiffer lava succession and the softer hyaloclastites, which favours the development of concentric faults. We also measured a total extension of 16.6 m and 11.2 m along the fractures affecting the lava units, and a total extension in the hyaloclastites of 29.3 m. This produces an extension rate of 1.4 mm/yr in the Holocene lavas and 1.7 ± 0.7 mm/yr in the Weichselian hyaloclastite deposits. The spreading direction we obtained for this area is N97.7° E, resulting from the av. of 568 opening direction values.File | Dimensione | Formato | |
---|---|---|---|
10281-287413_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
10.07 MB
Formato
Adobe PDF
|
10.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.