Objective: In 1881, Exner first described a "graphic motor image center" in the middle frontal gyrus. Current psycholinguistic models of handwriting involve the conversion of abstract, orthographic representations into motor representations before a sequence of appropriate hand movements is produced. Direct cortical stimulation and functional magnetic resonance imaging (fMRI) were used to study the human frontal areas involved in writing. Methods: Cortical electrical stimulation mapping was used intraoperatively in 12 patients during the removal of brain tumors to identify the areas involved in oral language (sentence reading and naming) and writing, and to spare them during surgery. The fMRI activation experiment involved 12 right-handed and 12 left-handed healthy volunteers using word dictation (without visual control) and 2 control tasks. Results: Direct cortical electrical stimulation of restricted areas rostral to the primary motor hand area (Brodmann area [BA] 6) impaired handwriting in 6 patients, without disturbing hand movements or oral language tasks. In 6 other patients, stimulation of lower frontal regions showed deficits combining handwriting with other language tasks. fMRI also revealed selective activation during word handwriting in left versus right BA6 depending on handedness. This area was anatomically matched to those areas that affected handwriting on electrical stimulation. Interpretation: An area in middle frontal gyrus (BA6) that we have termed the graphemic/motor frontal area supports bridging between orthography and motor programs specific to handwriting

Roux, F., Dufor, O., Giussani, C., Wamain, Y., Draper, L., Longcamp, M., et al. (2009). The graphemic/motor frontal area Exner's area revisited. ANNALS OF NEUROLOGY, 66(4), 537-545 [10.1002/ana.21804].

The graphemic/motor frontal area Exner's area revisited

GIUSSANI, CARLO GIORGIO;
2009

Abstract

Objective: In 1881, Exner first described a "graphic motor image center" in the middle frontal gyrus. Current psycholinguistic models of handwriting involve the conversion of abstract, orthographic representations into motor representations before a sequence of appropriate hand movements is produced. Direct cortical stimulation and functional magnetic resonance imaging (fMRI) were used to study the human frontal areas involved in writing. Methods: Cortical electrical stimulation mapping was used intraoperatively in 12 patients during the removal of brain tumors to identify the areas involved in oral language (sentence reading and naming) and writing, and to spare them during surgery. The fMRI activation experiment involved 12 right-handed and 12 left-handed healthy volunteers using word dictation (without visual control) and 2 control tasks. Results: Direct cortical electrical stimulation of restricted areas rostral to the primary motor hand area (Brodmann area [BA] 6) impaired handwriting in 6 patients, without disturbing hand movements or oral language tasks. In 6 other patients, stimulation of lower frontal regions showed deficits combining handwriting with other language tasks. fMRI also revealed selective activation during word handwriting in left versus right BA6 depending on handedness. This area was anatomically matched to those areas that affected handwriting on electrical stimulation. Interpretation: An area in middle frontal gyrus (BA6) that we have termed the graphemic/motor frontal area supports bridging between orthography and motor programs specific to handwriting
Articolo in rivista - Articolo scientifico
Graphemic motor area, brain mapping, cortical stimulation
English
2009
66
4
537
545
reserved
Roux, F., Dufor, O., Giussani, C., Wamain, Y., Draper, L., Longcamp, M., et al. (2009). The graphemic/motor frontal area Exner's area revisited. ANNALS OF NEUROLOGY, 66(4), 537-545 [10.1002/ana.21804].
File in questo prodotto:
File Dimensione Formato  
The graphemic Exner's area.pdf

Solo gestori archivio

Dimensione 931.2 kB
Formato Adobe PDF
931.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/28705
Citazioni
  • Scopus 132
  • ???jsp.display-item.citation.isi??? 109
Social impact