Background: Positron emission tomography (PET) is a valuable tool for the characterization of brain tumors in vivo. However, few studies have investigated the correlation between carbon-11-methionine (11C-METH) PET metrics and the clinical, radiological, histological, and molecular features of patients affected by lower grade gliomas (LGGs). The present observational study evaluated the relationships between 11C-METH PET metrics and structural magnetic resonance imaging (MRI) findings with the histomolecular biomarkers in patients with LGGs who were candidates for surgery. Methods: We enrolled 96 patients with pathologically proven LGG (51 men, 45 women; age 44.1 ± 13.7 years; 45 with grade II, 51 with grade III), who had been referred from March 2012 to January 2015 for tumor resection and had undergone preoperative 11C-METH PET. The semiquantitative metrics for 11C-METH PET included maximum standardized uptake value (SUVmax), SUV ratio to normal brain, and metabolic tumor burden (MTB). The PET semiquantitative metrics were analyzed and compared with the MRI features, histological diagnosis, isocitrate dehydrogenase-1/2 status, and 1p/19q codeletion. Results: Histological grade was associated with SUVmax (P = 0.002), SUV ratio (P = 0.011), and MTB (P = 0.001), with grade III lesions showing higher values. Among the nonenhancing lesions on MRI, SUVmax (P = 0.001), SUV ratio (P = 0.003) and MTB (P < 0.001) were significantly different statistically for grade II versus grade III. The MRI lesion volume correlated poorly with MTB (r2 = 0.13). The SUVmax and SUV ratio were greater (P < 0.05) in isocitrate dehydrogenase-1/2 wild-type lesions, and the SUV ratio was associated with the presence of the 1p19q codeletion. Conclusions: The 11C-METH PET metrics correlated significantly with histological grade and the molecular profile. Semiquantitative PET metrics can improve the preoperative evaluation of LGGs and thus support clinical decision-making.

Riva, M., Lopci, E., Castellano, A., Olivari, L., Gallucci, M., Pessina, F., et al. (2019). Lower Grade Gliomas: Relationships Between Metabolic and Structural Imaging with Grading and Molecular Factors. WORLD NEUROSURGERY, 126, e270-e280 [10.1016/j.wneu.2019.02.031].

Lower Grade Gliomas: Relationships Between Metabolic and Structural Imaging with Grading and Molecular Factors

Castellano A.;Gallucci M.;Grimaldi M.;
2019

Abstract

Background: Positron emission tomography (PET) is a valuable tool for the characterization of brain tumors in vivo. However, few studies have investigated the correlation between carbon-11-methionine (11C-METH) PET metrics and the clinical, radiological, histological, and molecular features of patients affected by lower grade gliomas (LGGs). The present observational study evaluated the relationships between 11C-METH PET metrics and structural magnetic resonance imaging (MRI) findings with the histomolecular biomarkers in patients with LGGs who were candidates for surgery. Methods: We enrolled 96 patients with pathologically proven LGG (51 men, 45 women; age 44.1 ± 13.7 years; 45 with grade II, 51 with grade III), who had been referred from March 2012 to January 2015 for tumor resection and had undergone preoperative 11C-METH PET. The semiquantitative metrics for 11C-METH PET included maximum standardized uptake value (SUVmax), SUV ratio to normal brain, and metabolic tumor burden (MTB). The PET semiquantitative metrics were analyzed and compared with the MRI features, histological diagnosis, isocitrate dehydrogenase-1/2 status, and 1p/19q codeletion. Results: Histological grade was associated with SUVmax (P = 0.002), SUV ratio (P = 0.011), and MTB (P = 0.001), with grade III lesions showing higher values. Among the nonenhancing lesions on MRI, SUVmax (P = 0.001), SUV ratio (P = 0.003) and MTB (P < 0.001) were significantly different statistically for grade II versus grade III. The MRI lesion volume correlated poorly with MTB (r2 = 0.13). The SUVmax and SUV ratio were greater (P < 0.05) in isocitrate dehydrogenase-1/2 wild-type lesions, and the SUV ratio was associated with the presence of the 1p19q codeletion. Conclusions: The 11C-METH PET metrics correlated significantly with histological grade and the molecular profile. Semiquantitative PET metrics can improve the preoperative evaluation of LGGs and thus support clinical decision-making.
Articolo in rivista - Articolo scientifico
Clinical trials observational study; MRI; PET; Primary brain tumor; Surgical therapy for tumor; Adult; Biomarkers; Brain; Brain Neoplasms; Female; Glioma; Humans; Isocitrate Dehydrogenase; Magnetic Resonance Imaging; Male; Methionine; Middle Aged; Neoplasm Grading; Positron-Emission Tomography; Radiopharmaceuticals; Sensitivity and Specificity
English
2019
126
e270
e280
none
Riva, M., Lopci, E., Castellano, A., Olivari, L., Gallucci, M., Pessina, F., et al. (2019). Lower Grade Gliomas: Relationships Between Metabolic and Structural Imaging with Grading and Molecular Factors. WORLD NEUROSURGERY, 126, e270-e280 [10.1016/j.wneu.2019.02.031].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/285410
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
Social impact