A major problem of current biomedical implants is the bacterial colonization and subsequent biofilm formation, which seriously affects their functioning and can lead to serious post-surgical complications. Intensive efforts have been directed toward the development of novel technologies that can prevent bacterial colonization while requiring minimal antibiotics doses. To this end, biocompatible materials with intrinsic antifouling capabilities are in high demand. Silk fibroin, widely employed in biotechnology, represents an interesting candidate. Here, we employ a soft-lithography approach to realize micro- and nanostructured silk fibroin substrates, with different geometries. We show that patterned silk film substrates support mammal cells (HEK-293) adhesion and proliferation, and at the same time, they intrinsically display remarkable antifouling properties. We employ Escherichia coli as representative Gram-negative bacteria, and we observe an up to 66% decrease in the number of bacteria that adhere to patterned silk surfaces as compared to control, flat silk samples. The mechanism leading to the inhibition of biofilm formation critically depends on the microstructure geometry, involving both a steric and a hydrophobic effect. We also couple silk fibroin patterned films to a biocompatible, optically responsive organic semiconductor, and we verify that the antifouling properties are very well preserved. The technology described here is of interest for the next generation of biomedical implants, involving the use of materials with enhanced antibacterial capability, easy processability, high biocompatibility, and prompt availability for coupling with photoimaging and photodetection techniques.

Tullii, G., Donini, S., Bossio, C., Lodola, F., Pasini, M., Parisini, E., et al. (2020). Micro- and Nanopatterned Silk Substrates for Antifouling Applications. ACS APPLIED MATERIALS & INTERFACES, 12(5), 5437-5446 [10.1021/acsami.9b18187].

Micro- and Nanopatterned Silk Substrates for Antifouling Applications

Lodola F;
2020

Abstract

A major problem of current biomedical implants is the bacterial colonization and subsequent biofilm formation, which seriously affects their functioning and can lead to serious post-surgical complications. Intensive efforts have been directed toward the development of novel technologies that can prevent bacterial colonization while requiring minimal antibiotics doses. To this end, biocompatible materials with intrinsic antifouling capabilities are in high demand. Silk fibroin, widely employed in biotechnology, represents an interesting candidate. Here, we employ a soft-lithography approach to realize micro- and nanostructured silk fibroin substrates, with different geometries. We show that patterned silk film substrates support mammal cells (HEK-293) adhesion and proliferation, and at the same time, they intrinsically display remarkable antifouling properties. We employ Escherichia coli as representative Gram-negative bacteria, and we observe an up to 66% decrease in the number of bacteria that adhere to patterned silk surfaces as compared to control, flat silk samples. The mechanism leading to the inhibition of biofilm formation critically depends on the microstructure geometry, involving both a steric and a hydrophobic effect. We also couple silk fibroin patterned films to a biocompatible, optically responsive organic semiconductor, and we verify that the antifouling properties are very well preserved. The technology described here is of interest for the next generation of biomedical implants, involving the use of materials with enhanced antibacterial capability, easy processability, high biocompatibility, and prompt availability for coupling with photoimaging and photodetection techniques.
Articolo in rivista - Articolo scientifico
Silk, Micro- and Nanopatterned Substrates, Antifouling Applications
English
5-feb-2020
2020
12
5
5437
5446
partially_open
Tullii, G., Donini, S., Bossio, C., Lodola, F., Pasini, M., Parisini, E., et al. (2020). Micro- and Nanopatterned Silk Substrates for Antifouling Applications. ACS APPLIED MATERIALS & INTERFACES, 12(5), 5437-5446 [10.1021/acsami.9b18187].
File in questo prodotto:
File Dimensione Formato  
Tullii-2020-ACS Appl Mater Inter-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri
Tullii-2020-ACS Appl Mater Inter-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 4.97 MB
Formato Adobe PDF
4.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/284267
Citazioni
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
Social impact