Both theoretical and experimental studies of pleural fluid dynamics and lung buoyancy during steady-state, apneic conditions are presented. The theory, shows that steady-state, top-to-bottom pleural-liquid flow, creates a pressure distribution that opposes lung buoyancy. These two forces may, balance, permitting dynamic lung floating, but when they, do not, pleural-pleural contact is required. The animal experiments examine pleural-liquid pressure distributions in response to simulated reduced gravity, achieved by, lung inflation with perfluorocarbon liquid as compared to air The resulting decrease in lung buoyancy modifies the force balance in the pleural fluid, which is reflected in its vertical pressure gradient. The data and model show that the decrease in buoyancy with perfluorocarbon inflation causes the vertical pressure gradient to approach hydrostatic. In the microgravity analogue, the pleural pressures would be toward a more uniform distribution, consistent with ventilation studies during spaceflight. The pleural liquid turnover predicted by the model is computed and found to be comparable to experimental values from the literature. The model provides the flow field, which can be used to develop a full transport theory for molecular and cellular constituents that are found in pleural fluid.
Haber, R., Grotberg, J., Glucksberg, M., Miserocchi, G., Venturoli, D., Del Fabbro, M., et al. (2001). Steady-state pleural fluid flow and pressure and the effects of lung buoyancy. JOURNAL OF BIOMECHANICAL ENGINEERING, 123(5), 485-492 [10.1115/1.1392317].
Steady-state pleural fluid flow and pressure and the effects of lung buoyancy
Miserocchi, G;
2001
Abstract
Both theoretical and experimental studies of pleural fluid dynamics and lung buoyancy during steady-state, apneic conditions are presented. The theory, shows that steady-state, top-to-bottom pleural-liquid flow, creates a pressure distribution that opposes lung buoyancy. These two forces may, balance, permitting dynamic lung floating, but when they, do not, pleural-pleural contact is required. The animal experiments examine pleural-liquid pressure distributions in response to simulated reduced gravity, achieved by, lung inflation with perfluorocarbon liquid as compared to air The resulting decrease in lung buoyancy modifies the force balance in the pleural fluid, which is reflected in its vertical pressure gradient. The data and model show that the decrease in buoyancy with perfluorocarbon inflation causes the vertical pressure gradient to approach hydrostatic. In the microgravity analogue, the pleural pressures would be toward a more uniform distribution, consistent with ventilation studies during spaceflight. The pleural liquid turnover predicted by the model is computed and found to be comparable to experimental values from the literature. The model provides the flow field, which can be used to develop a full transport theory for molecular and cellular constituents that are found in pleural fluid.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.