We introduce a systematic method to produce left-invariant, non-Ricci-flat Einstein metrics of indefinite signature on nice nilpotent Lie groups. On a nice nilpotent Lie group, we give a simple algebraic characterization of non-Ricci-flat left-invariant Einstein metrics in both the class of metrics for which the nice basis is orthogonal and a more general class associated to order two permutations of the nice basis. We obtain classifications in dimension 8 and, under the assumption that the root matrix is surjective, dimension 9; moreover, we prove that Einstein nilpotent Lie groups of nonzero scalar curvature exist in every dimension ≥8geq 8.
Conti, D., Rossi, F. (2020). Indefinite Einstein metrics on nice Lie groups. FORUM MATHEMATICUM, 32(6), 1599-1619 [10.1515/forum-2020-0049].
Indefinite Einstein metrics on nice Lie groups
Conti D.;Rossi F. A.
2020
Abstract
We introduce a systematic method to produce left-invariant, non-Ricci-flat Einstein metrics of indefinite signature on nice nilpotent Lie groups. On a nice nilpotent Lie group, we give a simple algebraic characterization of non-Ricci-flat left-invariant Einstein metrics in both the class of metrics for which the nice basis is orthogonal and a more general class associated to order two permutations of the nice basis. We obtain classifications in dimension 8 and, under the assumption that the root matrix is surjective, dimension 9; moreover, we prove that Einstein nilpotent Lie groups of nonzero scalar curvature exist in every dimension ≥8geq 8.File | Dimensione | Formato | |
---|---|---|---|
nice.pdf
Solo gestori archivio
Descrizione: Articolo principale
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Dimensione
447.75 kB
Formato
Adobe PDF
|
447.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.