We consider a class of equations in divergence form with a singular/degenerate weight (equation presented) Under suitable regularity assumptions for the matrix A, the forcing term f and the field F, we prove Hölder continuity of solutions which are odd in y 2 R, and possibly of their derivatives. In addition, we show stability of the C0;α and C1;α a priori bounds for approximating problems in the form (equation presented) as ϵ → 0. Our method is based upon blow-up and appropriate Liouville type theorems.
Sire, Y., Terracini, S., & Vita, S. (2021). Liouville type theorems and regularity of solutions to degenerate or singular problems part II: odd solutions. MATHEMATICS IN ENGINEERING, 3(1), 1-50 [10.3934/mine.2021005].
Citazione: | Sire, Y., Terracini, S., & Vita, S. (2021). Liouville type theorems and regularity of solutions to degenerate or singular problems part II: odd solutions. MATHEMATICS IN ENGINEERING, 3(1), 1-50 [10.3934/mine.2021005]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | Si | |
Titolo: | Liouville type theorems and regularity of solutions to degenerate or singular problems part II: odd solutions | |
Autori: | Sire, Y; Terracini, S; Vita, S | |
Autori: | ||
Data di pubblicazione: | 2021 | |
Lingua: | English | |
Rivista: | MATHEMATICS IN ENGINEERING | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.3934/mine.2021005 | |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
6_SireTerraciniVita_.pdf | Publisher's version | Administrator Richiedi una copia |