There is an urgent need to identify antivirals against the coronavirus SARS-CoV-2 in the current COVID-19 pandemic and to contain future similar emergencies early on. Specific side-chain cholesterol oxidation products of the oxysterols family have been shown to inhibit a large variety of both enveloped and non-enveloped human viral pathogens. Here we report on the in vitro inhibitory activity of the redox active oxysterol 27-hydroxycholesterol against SARS-CoV-2 and against one of the common cold agents HCoV-OC43 human coronavirus without significant cytotoxicity. Interestingly, physiological serum levels of 27-hydroxycholesterol in SARS-CoV-2 positive subjects were significantly decreased compared to the matched control group, reaching a marked 50% reduction in severe COVID-19 cases. Moreover, no correlation at all was observed between 24-hydroxycholesterol and 25-hydroxycholesterol serum levels and the severity of the disease. Opposite to that of 27-hydroxycholesterol was the behaviour of two recognized markers of redox imbalance, i.e. 7-ketocholesterol and 7β-hydroxycholesterol, whose serum levels were significantly increased especially in severe COVID-19. The exogenous administration of 27-hydroxycholesterol may represent in the near future a valid antiviral strategy in the worsening of diseases caused by present and emerging coronaviruses.

Marcello, A., Civra, A., Milan Bonotto, R., Nascimento Alves, L., Rajasekharan, S., Giacobone, C., et al. (2020). The cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and is markedly decreased in COVID-19 patients. REDOX BIOLOGY, 36 [10.1016/j.redox.2020.101682].

The cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and is markedly decreased in COVID-19 patients

Giacobone, Chiara;Brambilla, Paolo;Leoni, Valerio
Ultimo
2020

Abstract

There is an urgent need to identify antivirals against the coronavirus SARS-CoV-2 in the current COVID-19 pandemic and to contain future similar emergencies early on. Specific side-chain cholesterol oxidation products of the oxysterols family have been shown to inhibit a large variety of both enveloped and non-enveloped human viral pathogens. Here we report on the in vitro inhibitory activity of the redox active oxysterol 27-hydroxycholesterol against SARS-CoV-2 and against one of the common cold agents HCoV-OC43 human coronavirus without significant cytotoxicity. Interestingly, physiological serum levels of 27-hydroxycholesterol in SARS-CoV-2 positive subjects were significantly decreased compared to the matched control group, reaching a marked 50% reduction in severe COVID-19 cases. Moreover, no correlation at all was observed between 24-hydroxycholesterol and 25-hydroxycholesterol serum levels and the severity of the disease. Opposite to that of 27-hydroxycholesterol was the behaviour of two recognized markers of redox imbalance, i.e. 7-ketocholesterol and 7β-hydroxycholesterol, whose serum levels were significantly increased especially in severe COVID-19. The exogenous administration of 27-hydroxycholesterol may represent in the near future a valid antiviral strategy in the worsening of diseases caused by present and emerging coronaviruses.
Articolo in rivista - Articolo scientifico
27-Hydroxycholesterol, COVID-19, Cholesterol, Coronavirus, HCoV-OC43, Oxysterols, SARS-CoV-2
English
2020
36
101682
open
Marcello, A., Civra, A., Milan Bonotto, R., Nascimento Alves, L., Rajasekharan, S., Giacobone, C., et al. (2020). The cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and is markedly decreased in COVID-19 patients. REDOX BIOLOGY, 36 [10.1016/j.redox.2020.101682].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2213231720308879-main.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 4.74 MB
Formato Adobe PDF
4.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/282431
Citazioni
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 61
Social impact