Glutamate-mediated excitotoxicity plays a major role in the degeneration of motor neurons in amyotrophic lateral sclerosis and reduced astrocytary glutamate transport, which in turn increases the synaptic availability of the amino acid neurotransmitter, was suggested as a cause. Alternatively, here we report our studies on the exocytotic release of glutamate as a possible source of excessive glutamate transmission. The basal glutamate efflux from spinal cord nerve terminals of mice-expressing human soluble superoxide dismutase (SOD1) with the G93A mutation [SOD1/G93A(+)], a transgenic model of amyotrophic lateral sclerosis, was elevated when compared with transgenic mice expressing the wild-type human SOD1 or to non-transgenic controls. Exposure to 15 mM KCl or 0.3 μM ionomycin provoked Ca(2+)-dependent glutamate release that was dramatically increased in late symptomatic and in pre-symptomatic SOD1/G93A(+) mice. Increased Ca(2+) levels were detected in SOD1/G93A(+) mouse spinal cord nerve terminals, accompanied by increased activation of Ca(2+)/calmodulin-dependent kinase II and increased phosphorylation of synapsin I. In line with these findings, release experiments suggested that the glutamate release augmentation involves the readily releasable pool of vesicles and a greater capability of these vesicles to fuse upon stimulation in SOD1/G93A(+) mice.

Milanese, M., Zappettini, S., Onofri, F., Musazzi, L., Tardito, D., Bonifacino, T., et al. (2011). Abnormal exocytotic release of glutamate in a mouse model of amyotrophic lateral sclerosis. JOURNAL OF NEUROCHEMISTRY, 116(6), 1028-1042 [10.1111/j.1471-4159.2010.07155.x].

Abnormal exocytotic release of glutamate in a mouse model of amyotrophic lateral sclerosis

L. Musazzi;
2011

Abstract

Glutamate-mediated excitotoxicity plays a major role in the degeneration of motor neurons in amyotrophic lateral sclerosis and reduced astrocytary glutamate transport, which in turn increases the synaptic availability of the amino acid neurotransmitter, was suggested as a cause. Alternatively, here we report our studies on the exocytotic release of glutamate as a possible source of excessive glutamate transmission. The basal glutamate efflux from spinal cord nerve terminals of mice-expressing human soluble superoxide dismutase (SOD1) with the G93A mutation [SOD1/G93A(+)], a transgenic model of amyotrophic lateral sclerosis, was elevated when compared with transgenic mice expressing the wild-type human SOD1 or to non-transgenic controls. Exposure to 15 mM KCl or 0.3 μM ionomycin provoked Ca(2+)-dependent glutamate release that was dramatically increased in late symptomatic and in pre-symptomatic SOD1/G93A(+) mice. Increased Ca(2+) levels were detected in SOD1/G93A(+) mouse spinal cord nerve terminals, accompanied by increased activation of Ca(2+)/calmodulin-dependent kinase II and increased phosphorylation of synapsin I. In line with these findings, release experiments suggested that the glutamate release augmentation involves the readily releasable pool of vesicles and a greater capability of these vesicles to fuse upon stimulation in SOD1/G93A(+) mice.
Articolo in rivista - Articolo scientifico
amyotrophic lateral sclerosis; exocytosis; glutamate release; SOD1/G93A expressing mice; synapsin I
English
2011
116
6
1028
1042
reserved
Milanese, M., Zappettini, S., Onofri, F., Musazzi, L., Tardito, D., Bonifacino, T., et al. (2011). Abnormal exocytotic release of glutamate in a mouse model of amyotrophic lateral sclerosis. JOURNAL OF NEUROCHEMISTRY, 116(6), 1028-1042 [10.1111/j.1471-4159.2010.07155.x].
File in questo prodotto:
File Dimensione Formato  
JNc11.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 643.97 kB
Formato Adobe PDF
643.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/278351
Citazioni
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 57
Social impact