We consider the Caputo fractional derivative and say that a function is Caputo-stationary if its Caputo derivative is zero. We then prove that any Ck([0,1]) function can be approximated in [0,1] by a function that is Caputo-stationary in [0,1], with initial point a< 0. Otherwise said, Caputo-stationary functions are dense in Ckloc(R).

Bucur, C. (2017). Local density of Caputo-stationary functions in the space of smooth functions. ESAIM. COCV, 23(4), 1361-1380 [10.1051/cocv/2016056].

Local density of Caputo-stationary functions in the space of smooth functions

Bucur, C
2017

Abstract

We consider the Caputo fractional derivative and say that a function is Caputo-stationary if its Caputo derivative is zero. We then prove that any Ck([0,1]) function can be approximated in [0,1] by a function that is Caputo-stationary in [0,1], with initial point a< 0. Otherwise said, Caputo-stationary functions are dense in Ckloc(R).
Articolo in rivista - Articolo scientifico
Caputo stationary; Fractional derivative; Nonlocal operators;
Caputo stationary; Fractional derivative; Nonlocal operators
English
2017
23
4
1361
1380
none
Bucur, C. (2017). Local density of Caputo-stationary functions in the space of smooth functions. ESAIM. COCV, 23(4), 1361-1380 [10.1051/cocv/2016056].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/277784
Citazioni
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
Social impact