Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a complex etiology and characterized by cognitive deficits and memory loss. The pathogenesis of AD is not yet completely elucidated, and no curative treatment is currently available. Inwardly rectifying potassium (Kir) channels are important for playing a key role in maintaining the resting membrane potential and controlling cell excitability, being largely expressed in both excitable and non-excitable tissues, including neurons. Accordingly, the aim of the study is to investigate the role of neuronal Kir channels in AD pathophysiology. The mRNA and protein levels of neuronal Kir2.1, Kir3.1, and Kir6.2 were evaluated by real-time PCR and Western blot analysis from the hippocampus of an amyloid-β(Aβ)(1-42)-infused rat model of AD. Extracellular deposition of Aβ was confirmed by both histological Congo red staining and immunofluorescence analysis. Significant decreased mRNA and protein levels of Kir2.1 and Kir6.2 channels were observed in the rat model of AD, whereas no differences were found in Kir3.1 channel levels as compared with controls. Our results provide in vivo evidence that A can modulate the expression of these channels, which may represent novel potential therapeutic targets in the treatment of AD.
Akyuz, E., Villa, C., Beker, M., Elibol, B. (2020). Unraveling the role of inwardly rectifying potassium channels in the hippocampus of an Aβ(1-42)-infused rat model of Alzheimer's disease. BIOMEDICINES, 8(3), 58 [10.3390/biomedicines8030058].
Unraveling the role of inwardly rectifying potassium channels in the hippocampus of an Aβ(1-42)-infused rat model of Alzheimer's disease
Villa C.
Secondo
;
2020
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a complex etiology and characterized by cognitive deficits and memory loss. The pathogenesis of AD is not yet completely elucidated, and no curative treatment is currently available. Inwardly rectifying potassium (Kir) channels are important for playing a key role in maintaining the resting membrane potential and controlling cell excitability, being largely expressed in both excitable and non-excitable tissues, including neurons. Accordingly, the aim of the study is to investigate the role of neuronal Kir channels in AD pathophysiology. The mRNA and protein levels of neuronal Kir2.1, Kir3.1, and Kir6.2 were evaluated by real-time PCR and Western blot analysis from the hippocampus of an amyloid-β(Aβ)(1-42)-infused rat model of AD. Extracellular deposition of Aβ was confirmed by both histological Congo red staining and immunofluorescence analysis. Significant decreased mRNA and protein levels of Kir2.1 and Kir6.2 channels were observed in the rat model of AD, whereas no differences were found in Kir3.1 channel levels as compared with controls. Our results provide in vivo evidence that A can modulate the expression of these channels, which may represent novel potential therapeutic targets in the treatment of AD.File | Dimensione | Formato | |
---|---|---|---|
10281-273577_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
1.61 MB
Formato
Adobe PDF
|
1.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.