Currently there is a strong demand for novel protective materials with effcient antibacterial properties. Nanocomposite materials loaded with photo-thermally active nanoparticles can offer promising opportunities due to the local increase of temperature upon near-infrared (NIR) light exposure capable of eradicating bacteria. In this work, we fabricated antibacterial films obtained by spraying on glass slides aqueous solutions of polymers, containing highly photo-thermally active gold nanostars (GNS) or Prussian Blue (PB) nanoparticles. Under NIR light irradiation with low intensities (0.35W/cm2) these films demonstrated a pronounced photo-thermal effect: ∆Tmax up to 26.4 ffC for the GNS-containing films and ∆Tmax up to 45.8 ffC for the PB-containing films. In the latter case, such a local temperature increase demonstrated a remarkable effect on a Gram-negative strain (P. aeruginosa) killing (84% of dead bacteria), and a promising effect on a Gram-positive strain (S. aureus) eradication (69% of dead bacteria). The fabricated films are promising prototypes for further development of lightweight surfaces with effcient antibacterial action that can be remotely activated on demand.
Borzenkov, M., Chirico, G., Pallavicini, P., Sperandeo, P., Polissi, A., Dacarro, G., et al. (2020). Nanocomposite sprayed films with photo-thermal properties for remote bacteria eradication. NANOMATERIALS, 10(4) [10.3390/nano10040786].
Nanocomposite sprayed films with photo-thermal properties for remote bacteria eradication
Borzenkov, Mykola
;Chirico, Giuseppe;Collini, Maddalena;Sironi, Laura;Bouzin, Margaux;D'Alfonso, Laura
2020
Abstract
Currently there is a strong demand for novel protective materials with effcient antibacterial properties. Nanocomposite materials loaded with photo-thermally active nanoparticles can offer promising opportunities due to the local increase of temperature upon near-infrared (NIR) light exposure capable of eradicating bacteria. In this work, we fabricated antibacterial films obtained by spraying on glass slides aqueous solutions of polymers, containing highly photo-thermally active gold nanostars (GNS) or Prussian Blue (PB) nanoparticles. Under NIR light irradiation with low intensities (0.35W/cm2) these films demonstrated a pronounced photo-thermal effect: ∆Tmax up to 26.4 ffC for the GNS-containing films and ∆Tmax up to 45.8 ffC for the PB-containing films. In the latter case, such a local temperature increase demonstrated a remarkable effect on a Gram-negative strain (P. aeruginosa) killing (84% of dead bacteria), and a promising effect on a Gram-positive strain (S. aureus) eradication (69% of dead bacteria). The fabricated films are promising prototypes for further development of lightweight surfaces with effcient antibacterial action that can be remotely activated on demand.File | Dimensione | Formato | |
---|---|---|---|
10281-273390_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
3.93 MB
Formato
Adobe PDF
|
3.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.